[1] |
LI Yansheng, ZHANG Yongjun, ZHU Zhihui. Error-tolerant deep learning for remote sensing image scene classification[J]. IEEE Transactions on Cybernetics, 2021, 51(4):1756-1768.
|
[2] |
龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 2019, 39(3):0301002.
|
|
GONG Xi, WU Liang, XIE Zhong, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019, 39(3):0301002.
|
[3] |
白坤, 慕晓冬, 陈雪冰, 等. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5):691-702.DOI: 10.11947/J.AGCS.2022.20210270.
|
|
BAI Kun, MU Xiaodong, CHEN Xuebing, et al. Unsupervised remote sensing image scene classification based on semi-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):691-702.DOI: 10.11947/J.AGCS.2022.20210270.
|
[4] |
ZHU Qiqi, ZHONG Yanfei, ZHANG Liangpei, et al. Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):6180-6195.
|
[5] |
HUANG Xin, HAN Xiaopeng, MA Song, et al. Monitoring ecosystem service change in the city of Shenzhen by the use of high-resolution remotely sensed imagery and deep learning[J]. Land Degradation & Development, 2019, 30(12):1490-1501.
|
[6] |
YAO Xiwen, HAN Junwei, CHENG Gong, et al. Semantic annotation of high-resolution satellite images via weakly supervised learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3660-3671.
|
[7] |
LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: a deep adaptive fusion network with multiple field-of-views for remote sen-sing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4):140305.
|
[8] |
YANG Yi, NEWSAM S. Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery[C]//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego: IEEE, 2008: 1852-1855.
|
[9] |
ZHONG Yanfei, ZHU Qiqi, ZHANG Liangpei. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11):6207-6222.
|
[10] |
LI Yansheng, TAO Chao, TAN Yihua, et al. Unsupervised multilayer feature learning for satellite image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):157-161.
|
[11] |
XU Kejie, DENG Peifang, HUANG Hong. Vision transformer: an excellent teacher for guiding small networks in remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3152566.
|
[12] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981.
|
[13] |
CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883.
|
[14] |
YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.San Jose: ACM Press, 2010: 270-279.
|
[15] |
CAO Ran, FANG Leyuan, LU Ting, et al. Self-attention-based deep feature fusion for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1):43-47.
|
[16] |
ZHAO Zhicheng, LI Jiaqi, LUO Ze, et al. Remote sensing image scene classification based on an enhanced attention module[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(11):1926-1930.
|
[17] |
ZHANG Yue, ZHENG Xiangtao, LU Xiaoqiang. Pairwise comparison network for remote-sensing scene classification[J]. IEEE Geo-science and Remote Sensing Letters, 2022, 19:1-5.
|
[18] |
BAZI Y, BASHMAL L, AL RAHHAL M M, et al. Vision transformers for remote sensing image classification[J]. Remote Sensing, 2021, 13(3):516.
|
[19] |
LÜ Pengyuan, WU Wenjun, ZHONG Yanfei, et al. SCViT: a spatial-channel feature preserving vision transformer for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3157671.
|
[20] |
LI Lingjun, HAN Junwei, YAO Xiwen, et al. DLA-MatchNet for few-shot remote sensing image scene classification[J]. IEEE Tran-sactions on Geoscience and Remote Sensing, 2021, 59(9):7844-7853.
|
[21] |
LI Yansheng, KONG Deyu, ZHANG Yongjun, et al. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179:145-158.
|
[22] |
LI Yansheng, OUYANG Song, ZHANG Yongjun. Combining deep learning and ontology reasoning for remote sensing image semantic segmentation[J]. Knowledge-Based Systems, 2022, 243:108469.
|
[23] |
LI Yansheng, ZHOU Yuhan, ZHANG Yongjun, et al. DKDFN: domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186:170-189.
|
[24] |
MA Xiaorui, WANG Hongyu, LIU Yi, et al. Knowledge guided classification of hyperspectral image based on hierarchical class tree[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama: IEEE, 2019: 2702-2705.
|
[25] |
ZHU Qiqi, LEI Yang, SUN Xiongli, et al. Knowledge-guided land pattern depiction for urban land use mapping: a case study of Chinese cities[J]. Remote Sensing of Environment, 2022, 272:112916.
|
[26] |
FENSEL D, SIMSEK U, ANGELE K, et al.Introduction: what is a knowledge graph? [M]//Knowledge Graphs. Cham: Springer, 2020: 1-10.
|
[27] |
田玲, 张谨川, 张晋豪, 等. 知识图谱综述:表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8):2161-2186.
|
|
TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, et al. Knowledge graph survey: representation, construction, reasoning and know-ledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8):2161-2186.
|
[28] |
BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD international conference on Management of data. Vancouver: ACM Press, 2008: 1247-1250.
|
[29] |
LEHMANN J, ISELE R, JAKOB M, et al. DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2):167-195.
|
[30] |
CHEN Jindong, WANG Ao, CHEN Jiangjie, et al. CN-Probase: a data-driven approach for large-scale Chinese taxonomy construction[C]//Proceedings of the 35th International Conference on Data Engineering (ICDE).Macao: IEEE, 2019: 1706-1709.
|
[31] |
李彦胜, 武康, 欧阳松, 等.地学知识图谱引导的遥感影像语义分割[J]. 遥感学报, 2024, 28(2):455-469. DOI: 10.11834/Jrs.20231110.
|
|
LI Yansheng, WU Kang, OUYANG Song, et al. Geographic knowledge graph-guided deep semantic segmentation network for remote sensing imagery [J]. National Remote Sensing Bulletin, 2024, 28(2):455-469. DOI: 10.11834/Jrs.20231110.
|
[32] |
JANOWICZ K, HITZLER P, LI Wenwen, et al. Know, know where, KnowWhereGraph: a densely connected, cross-domain know-ledge graph and geo-enrichment service stack for applications in environmental intelligence[J]. AI Magazine, 2022, 43(1):30-39.
|
[33] |
张雪英, 张春菊, 吴明光, 等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学, 2020, 50(7):1019-1032.
|
|
ZHANG Xueying, ZHANG Chunju, WU Mingguang, et al. Spatiotemporal features based geographical knowledge graph construction[J]. Scientia Sinica (Informationis), 2020, 50(7):1019-1032.
|
[34] |
STADLER C, LEHMANN J, HÖFFNER K, et al. LinkedGeoData: a core for a web of spatial open data[J]. Semantic Web, 2012, 3(4):333-354.
|
[35] |
李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8):1176-1190.
|
|
LI Yansheng, ZHANG Yongjun. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1176-1190.
|
[36] |
张永军, 程鑫, 李彦胜, 等. 利用知识图谱的国土资源数据管理与检索研究[J]. 武汉大学学报(信息科学版), 2022, 47(8):1165-1175.
|
|
ZHANG Yongjun, CHENG Xin, LI Yansheng, et al. Research on land and resources management and retrieval using knowledge graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1165-1175.
|
[37] |
张永军, 王飞, 李彦胜, 等. 遥感知识图谱创建及其典型场景应用技术[J]. 遥感学报, 2023, 27(2):249-266.
|
|
ZHANG Yongjun, WANG Fei, LI Yansheng, et al. Remote sensing knowledge graph construction and its application in typical scenarios[J]. National Remote Sensing Bulletin, 2023, 27(2):249-266.
|
[38] |
MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Lake Tahoe: ACM Press, 2013: 3111-3119.
|
[39] |
DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-01-05].http://arxiv.org/abs/1810.04805.
|
[40] |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Lake Tahoe: ACM Press, 2013: 2787-2795.
|
[41] |
WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Québec City: ACM Press, 2014: 1112-1119.
|
[42] |
JI Guoliang, HE Shizhu, XU Liheng, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: IEEE, 2015: 687-696.
|
[43] |
SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: knowledge graph embedding by relational rotation in complex space.[EB/OL]. [2024-01-01].http://arxiv.org/abs/1902.10197.
|
[44] |
ZHANG Zhanqiu, CAI Jianyu, ZHANG Yongdong, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):3065-3072.
|
[45] |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of 2011 International Conference on Machine Learning. New York: ACM Press, 2011.
|
[46] |
YANG Bishan, YIH Wentau, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2024-01-01].http://arxiv.org/abs/1412.6575.
|
[47] |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: ACM Press, 2016: 2071-2080.
|
[48] |
BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg: IEEE, 2019: 5185-5194.
|
[49] |
MARINO K, SALAKHUTDINOV R, GUPTA A. The more you know: using knowledge graphs for image classification[C]//Procee-dings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 20-28.
|
[50] |
SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[C]//Proceedings of 2017 AAAI Conference on Artificial Intelligence.San Francisco: ACM Press, 2017: 4444-4451.
|
[51] |
TAN Mingxing, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of 2019 International Conference on Machine Learning. Long Beach: IEEE, 2019: 6105-6114.
|
[52] |
LI Yansheng, ZHU Zhihui, YU Jingang, et al. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10590-10603.
|
[53] |
BAZI Y, AL RAHHAL M M, ALHICHRI H, et al. Simple yet effective fine-tuning of deep CNNs using an auxiliary classification loss for remote sensing scene classification[J]. Remote Sensing, 2019, 11(24):2908.
|
[54] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-01-01].http://arxiv.org/abs/1409.1556.
|