| [1] |
ZHAO Qiang, YU Le, DU Zhenrong, et al. An overview of the applications of earth observation satellite data: impacts and future trends[J]. Remote Sensing, 2022, 14(8): 1863.
|
| [2] |
LI Yansheng, MA Jiayi, ZHANG Yongjun. Image retrieval from remote sensing big data: a survey[J]. Information Fusion, 2021, 67: 94-115.
|
| [3] |
GUO Huadong. Big Earth Data: a new frontier in Earth and information sciences[J]. Big Earth Data, 2017, 1(1-2): 4-20.
|
| [4] |
李德仁, 王密, 仵倩玉. 论智能遥感卫星的“快、准、灵”应用服务[J]. 先进小卫星技术(中英文), 2024(1): 1-9.
|
|
LI Deren, WANG Mi, WU Qianyu. Fast, accurate and smart applications of intelligent remote sensing satellites[J]. Advanced Small Satellite Technology, 2024(1): 1-9.
|
| [5] |
LI Deren, WANG Mi, JIANG Jie. China's high-resolution optical remote sensing satellites and their mapping applications[J]. Geo-spatial Information Science, 2021, 24(1): 85-94.
|
| [6] |
CHEN Liangfu, LETU H, FAN Meng, et al. An introduction to the Chinese high-resolution Earth observation system: Gaofen-1~7 civilian satellites[J]. Journal of Remote Sensing, 2022, 2022: 1-14.
|
| [7] |
李德仁. 从珞珈系列卫星到东方慧眼星座[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1557-1565.
|
|
LI Deren. From the Luojia series satellites to the oriental smart eye constellation[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1557-1565.
|
| [8] |
WULDER M A, LOVELAND T R, ROY D P, et al. Current status of Landsat program, science, and applications[J]. Remote Sensing of Environment, 2019, 225: 127-147.
|
| [9] |
NGUYEN M D, BAEZ-VILLANUEVA O M, BUI D D, et al. Harmonization of Landsat and Sentinel 2 for crop monitoring in drought prone areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)[J]. Remote Sensing, 2020, 12(2): 281.
|
| [10] |
HONG Danfeng, LI Chenyu, ZHANG Bing, et al. Multimodal artificial intelligence foundation models: unleashing the power of remote sensing big data in earth observation[J]. The Innovation Geoscience, 2024, 2(1): 100055.
|
| [11] |
DIMITROVSKI I, KITANOVSKI I, KOCEV D, et al. Current trends in deep learning for earth observation: an open-source benchmark arena for image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 197: 18-35.
|
| [12] |
李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4): 379-384. DOI:.
doi: 10.11947/j.AGCS.2016.20160057
|
|
LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 379-384. DOI:.
doi: 10.11947/j.AGCS.2016.20160057
|
| [13] |
LI Wenwen, HSU C Y. GeoAI for large-scale image analysis and machine vision: recent progress of artificial intelligence in geography[J]. ISPRS International Journal of Geo-Information, 2022, 11(7): 385.
|
| [14] |
LI Ying, ZHANG Haokui, XUE Xizhe, et al. Deep learning for remote sensing image classification: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(6): e1264.
|
| [15] |
RAIHAN A. A comprehensive review of the recent advancement in integrating deep learning with geographic information systems[J]. Research Briefs on Information and Communication Technology Evolution, 2023, 9: 98-115.
|
| [16] |
ZHANG Bing, WU Yuanfeng, ZHAO Boya, et al. Progress and challenges in intelligent remote sensing satellite systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1814-1822.
|
| [17] |
RUBIN K, RAMAMURTHY M. Update on the EarthCube initiative[C]//Proceedings of 2019 Geophysical Research Abstracts. [S.l.]: IEEE, 2019: 21.
|
| [18] |
KILLOUGH B. Overview of the open data cube initiative[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 8629-8632.
|
| [19] |
YANG Liping, DRISCOL J, SARIGAI S, et al. Google earth engine and artificial intelligence (AI): a comprehensive review[J]. Remote Sensing, 2022, 14(14): 3253.
|
| [20] |
MONTOYA A V, BURBANO N M, MERO P C, et al. Google earth engine: a global analysis and future trends[J]. Remote Sensing, 2023, 15(14): 3675.
|
| [21] |
Looking back on a year of deeper connectivity acrossearth engine and cloud[EB/OL]. [2025-02-25]. https://cloud.google.com/blog/topics/sustainability/look-back-at-a-year-of-earth-engine-advancements.
|
| [22] |
YUE Peng, WANG Kaixuan, XU Hanwen, et al. From geospatial data cube to AI cube: the open geospatial engine (OGE) approach[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, 10: 441-446.
|
| [23] |
WANG Shaowen, ARMSTRONG M P. A theoretical approach to the use of cyberinfrastructure in geographical analysis[J]. International Journal of Geographical Information Science, 2009, 23(2): 169-193.
|
| [24] |
乐鹏. 高性能地理计算[M]. 北京: 科学出版社, 2021.
|
|
YUE Peng. High performance geographic computing[M]. Beijing: Science Press, 2021.
|
| [25] |
YUE Peng, SHANGGUAN Boyi, HU Lei, et al. Towards a training data model for artificial intelligence in earth observation[J]. International Journal of Geographical Information Science, 2022, 36(11): 2113-2137.
|
| [26] |
GAO Fan, YUE Peng, CAO Zhipeng, et al. A multi-source spatio-temporal data cube for large-scale geospatial analysis[J]. International Journal of Geographical Information Science, 2022, 36(9): 1853-1884.
|
| [27] |
LEWIS A, LACEY J, MECKLENBURG S, et al. CEOS analysis ready data for land (CARD4L) overview[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 7407-7410.
|
| [28] |
OGC disaster pilot 2021 engineering repor[EB/OL]. [2025-02-25]. https://docs.ogc.org/per/21-064.html.
|
| [29] |
CAO Zhipeng, JIANG Liangcun, YUE Peng, et al. A large scale training sample database system for intelligent interpretation of remote sensing imagery[J]. Geo-spatial Information Science, 2024, 27(5): 1489-1508.
|
| [30] |
高凡, 乐鹏, 姜良存, 等. GeoCube:面向大规模分析的多源对地观测时空立方体[J]. 遥感学报, 2022, 26(6): 1051-1066.
|
|
GAO Fan, YUE Peng, JIANG Liangcun, et al. GeoCube: a spatio-temporal cube toward massive and multi-source EO data analysis[J]. National Remote Sensing Bulletin, 2022, 26(6): 1051-1066.
|
| [31] |
LIU Ruixiang, YUE Peng, SHANGGUAN Boyi, et al. RTGDC: a real-time ingestion and processing approach in geospatial data cube for digital twin of earth[J]. International Journal of Digital Earth, 2024, 17(1): 2365386.
|
| [32] |
YUE Peng, GAO Fan, SHANGGUAN Boyi, et al. A machine learning approach for predicting computational intensity and domain decomposition in parallel geoprocessing[J]. International Journal of Geographical Information Science, 2020, 34(11): 2243-2274.
|
| [33] |
高凡, 路威, 甘麟露. 基于卷积神经网络的地理空间域计算强度预测与分解方法[J/OL]. 武汉大学学报(信息科学版), 2024: 1-16. [2024-11-06]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=WHCH20241106001&dbname=CJFD&dbcode=CJFQ.
|
|
GAO Fan, LU Wei, GAN Linlu. Computational strength prediction and decomposition method in geospatial domain based on convolutional neural network[J/OL]. China Industrial Economics, 2024: 1-16. [2024-11-06]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=WHCH20241106001&dbname=CJFD&dbcode=CJFQ.
|
| [34] |
ZHANG Zhan, ZHANG Mi, GONG Jianya, et al. LuoJiaAI: a cloud-based artificial intelligence platform for remote sensing image interpretation[J]. Geo-spatial Information Science, 2023, 26(2): 218-241.
|
| [35] |
LIU Shuaiqi, YUE Peng, XU Hanwen, et al. An OGC TrainingDML-AI approach for making EO training datasets ready in deep learning frameworks[C]//Proceedings of the 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). Wuhan: IEEE, 2023: 1-6.
|
| [36] |
乐鹏, 刘瑞祥, 上官博屹, 等. 地理人工智能样本:模型、质量与服务[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1616-1631.
|
|
YUE Peng, LIU Ruixiang, SHANGGUAN Boyi, et al. GeoAI training data: model, quality, and services[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1616-1631.
|