测绘学报 ›› 2025, Vol. 54 ›› Issue (6): 1139-1151.doi: 10.11947/j.AGCS.2025.20240478

• 地图学与地理信息 • 上一篇    下一篇

基于高斯混合回归与改进A*算法的时间最优路径规划方法

张瑞鑫1(), 徐青1(), 吕峥1, 张过2, 初霞3, 程祥4   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450001
    2.武汉大学测绘遥感信息工程全国重点实验室,湖北 武汉 430079
    3.61206部队,北京 100043
    4.66069部队,河南 洛阳 471000
  • 收稿日期:2024-11-26 修回日期:2025-05-06 出版日期:2025-07-14 发布日期:2025-07-14
  • 通讯作者: 徐青 E-mail:1185269992@qq.com;xq1982_no.1@163.com
  • 作者简介:张瑞鑫(2000—),男,硕士生,研究方向为车辆路径规划。E-mail:1185269992@qq.com
  • 基金资助:
    国家自然科学基金(42101455)

Time optimal path planning method based on Gaussian mixture regression and improved A* algorithm

Ruixin ZHANG1(), Qing XU1(), Zheng LÜ1, Guo ZHANG2, Xia CHU3, Xiang CHENG4   

  1. 1.Institute of Surveying and Maping, Information Engineering University, Zhengzhou 450001, China
    2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    3.Troops 61206, Beijing 100043, China
    4.Troops 66069, Luoyang 471000, China
  • Received:2024-11-26 Revised:2025-05-06 Online:2025-07-14 Published:2025-07-14
  • Contact: Qing XU E-mail:1185269992@qq.com;xq1982_no.1@163.com
  • About author:ZHANG Ruixin (2000—), male, postgraduate, majors in vehicle path planning. E-mail: 1185269992@qq.com
  • Supported by:
    The National Natural Science Foundation of China(42101455)

摘要:

路径规划在紧急救援、应急抢险等方面发挥着重要作用。在上述场景中,车辆往往能够通过越野与道路相结合的方式获取更快的通行路线。因此,本文提出了一种基于高斯混合回归与改进A*算法的时间最优路径规划方法。首先,综合考虑包括道路在内的多种因素对车辆通行的影响,以A*算法为基础结合车辆速度系数构建时间最优的通行成本模型。然后,利用高斯混合模型收集拟定救援路线的轨迹信息,结合高斯混合回归,约束A*算法搜索半径以提高算法搜索效率。最后,利用河南省登封市数据进行试验验证。结果表明,相较于二维A*、三维A*、二维时间最优A*及无约束的改进时间最优A*4种算法,本文算法的路径通过时长减少了2.02%~32.31%,代码运行时长减少了38.76%~83.6%,节点遍历个数减少了38.69%~79.77%。相比于高德地图的推荐路径,本文算法规划的路径距离缩短了6.86%~9.53%,通过时间减少了8.41%~17.22%。

关键词: 有路无路相结合的路径规划, 通行成本建模, 时间最优, 高斯混合回归, A*算法

Abstract:

Path planning plays an important role in emergency rescue and emergency rescue. In these scenarios, vehicles are often able to get faster routes through a combination of off-road and on-road routes. Therefore, a time optimal path planning method based on Gaussian mixture regression and improved A* algorithm is proposed. First, a time optimal traffic cost model is constructed using the A* algorithm combined with a vehicle speed coefficient, accounting for various factors affecting vehicle traffic, including road conditions. Second, the Gaussian mixture model is employed to collect trajectory information for the proposed rescue route. Combined with Gaussian mixture regression, this model constrains the search radius of the A* algorithm, enhancing its search efficiency. Finally, experimental verification is conducted using data from Dengfeng, Henan province. The results show that compared with the four algorithms of 2D A*, 3D A*, 2D time optimal A* and improved time optimal A* without Gaussian mixture regression constraints, the proposed algorithm reduces the path passage time by 2.02% to 32.31%, decreases code running time by 38.76% to 83.6%, and reduces node traversal by 38.69% to 79.77%. When compared to the recommended path from AutoNavi, the proposed algorithm shortens the path distance by 6.86% to 9.53% and reduces passage time by 8.41% to 17.22%.

Key words: path planning with combination of road and non-road routes, toll cost modeling, optimal timing, Gaussian mixed regression, A* algorithm

中图分类号: