[1] HUBER P J. Robust Statistics[M]//LOVRIC M. International Encyclopedia of Statistical Science. Berlin:Springer, 2011. [2] STEWART C V. Robust Parameter Estimation in Computer Vision[J]. SIAM Review, 1999, 41(3):513-537. [3] HAWKINS D M. The Feasible Set Algorithm for Least Median of Squares Regression[J]. Computational Statistics & Data Analysis, 1993, 16(1):81-101. [4] ROUSSEEUW P J. Least Median of Squares Regression[J]. Journal of the American Statistical Association, 1984, 79(388):871-880. [5] TORR P H S, ZISSERMAN A. MLESAC:A New Robust Estimator with Application to Estimating Image Geometry[J]. Computer Vision and Image Understanding, 2000, 78(1):138-156. [6] FISCHLER M A, BOLLES R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [7] 王亚伟, 许廷发, 王吉晖. 改进的匹配点提纯算法mRANSAC[J]. 东南大学学报(自然科学版), 2013, 43(S1):163-167. WANG Yawei, XU Tingfa, WANG Jihui. Improved Matching Point Purification Algorithm mRANSAC[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1):163-167. [8] LOWE D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [9] MOREL J M, YU Guoshen. ASIFT:A New Framework for Fully Affine Invariant Image Comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):438-469. [10] NISTÉR D. Preemptive RANSAC for Live Structure and Motion Estimation[J]. Machine Vision and Applications, 2005, 16(5):321-329. [11] CHUM O, MATAS J. Matching with PROSAC-progressive Sample Consensus[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA:IEEE, 2005, 1:220-226. [12] MATAS J,CHUM O.Randomized RANSAC[R]. Prague:Center for Machine Perception, Czech Technical University, 2001. [13] CHUM O, MATAS J. Optimal Randomized RANSAC[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8):1472-1482. [14] 钟金荣, 杜奇才, 刘荧, 等. 特征提取和匹配的图像倾斜校正[J]. 中国图象图形学报, 2013, 18(7):738-745. ZHONG Jinrong, DU Qicai, LIU Ying, et al. Robust Method of Skew Correction Based on Feature Points Matching[J]. Journal of Image and Graphics, 2013, 18(7):738-745. [15] LI Xiangru, HU Zhanyi. Rejecting Mismatches by Correspondence Function[J]. International Journal of Computer Vision, 2010, 89(1):1-17. [16] PAUL V C H.Method and Means for Recognizing Complex Patterns:U.S., 3,069,654[P]. 1962-12-18. [17] 谢亮, 陈姝, 张钧, 等. 利用Hough变换的匹配对提纯[J]. 中国图象图形学报, 2015, 20(8):1017-1025. XIE Liang, CHEN Shu, ZHANG Jun, et al. Purifying Algorithm for Rough Matched Pairs Using Hough Transform[J]. Journal of Image and Graphics, 2015, 20(8):1017-1025. [18] GROTH D, HARTMANN S, KLIE S, et al. Principal Components Analysis[M]//REISFELD B, MAYENO A N. Computational Toxicology:Methods in Molecular Biology.[S.l.]:Humana Press, 2013, 930:527-547. [19] 王俊淑, 江南, 张国明, 等. 融合光谱-空间信息的高光谱遥感影像增量分类算法[J]. 测绘学报, 2015, 44(9):1003-1013. DOI:10.11947/j.AGCS.2015.20140388. WANG Junshu, JIANG Nan, ZHANG Guoming, et al. Incremental Classification Algorithm of Hyperspectral Remote Sensing Images Based on Spectral-spatial Information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):1003-1013. DOI:10.11947/j.AGCS.2015.20140388. [20] 王文波, 赵攀, 张晓东. 利用经验模态分解和主成分分析的SAR图像相干斑抑制[J]. 测绘学报, 2012, 41(6):838-843. WANG Wenbo, ZHAO Pan, ZHANG Xiaodong. Research on SAR Image Speckle Reduction Using EMD and Principle Component Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6):838-843. [21] DE LATHAUWER L, DE MOOR B, VANDEWALLE J. A Multilinear Singular Value Decomposition[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4):1253-1278. [22] 林东方, 朱建军, 宋迎春, 等. 正则化的奇异值分解参数构造法[J]. 测绘学报, 2016, 45(8):883-889. DOI:10.11947/j.AGCS.2016.20150134. LIN Dongfang, ZHU Jianjun, SONG Yingchun, et al. Construction Method of Regularization by Singular Value Decomposition of Design Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):883-889. DOI:10.11947/j.AGCS.2016.20150134. [23] 周伟, 戴宗友, 袁广林, 等. CPU-GPU协同计算的并行奇异值分解方法[J]. 计算机科学, 2015, 42(6A):549-552. ZHOU Wei, DAI Zongyou, YUAN Guanglin, et al. Parallelized Singular Value Decomposition Method with Collaborative Computing of CPU-GPU[J]. Computer Science, 2015, 42(6A):549-552. [24] LAHABAR S, NARAYANAN P J. Singular Value Decomposition on GPU Using CUDA[C]//Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing. Rome:IEEE, 2009:1-10. [25] GOULUB G H, REINSCH C. Singular Value Decomposition and Least Squares Solutions[J]. Numerische Mathematik, 1970, 14(5):403-420. [26] 徐文华, 孙学栋. 奇异值分解求线性最小二乘解的理论分析[J]. 贵阳学院学报(自然科学版), 2010, 4(4):1-4. XU Wenhua, SUN Xuedong. A Theoretical Analysis of Linear Least Square Based on Singular Value Decomposition[J]. Journal of Guiyang College (Natural Sciences), 2010, 4(4):1-4. [27] 吴春国, 梁艳春, 孙延风, 等. 关于SVD与PCA等价性的研究[J]. 计算机学报, 2004, 27(2):286-288. WU Chunguo, LIANG Yanchun, SUN Yanfeng, et al. On the Equivalence of SVD and PCA[J]. Chinese Journal of Computers, 2004, 27(2):286-288. [28] 聂振国, 赵学智. PCA与SVD信号处理效果相似性与机理分析[J]. 振动与冲击, 2016, 35(2):12-17. NIE Zhenguo, ZHAO Xuezhi. Similarity of Signal Processing Effect between PCA and SVD and Its Mechanism Analysis[J]. Journal of Vibration and Shock, 2016, 35(2):12-17. [29] 数据科学自媒体. 解码数据降维:主成分分析(PCA)和奇异值分解(SVD)[EB/OL]. (2015-10-23).[2016-01-20].http://www.wtoutiao.com/p/T5431a.html. Data Science We Media. Decoding Data Dimension Reduction:Principal Component Analysis (PCA) and the Singular Value Decomposition (SVD)[EB/OL]. (2015-10-23).[2016-01-20]. http://www.wtoutiao.com/p/T5431a.html. [30] 钱征文, 程礼, 李应红. 利用奇异值分解的信号降噪方法[J]. 振动、测试与诊断, 2011, 31(4):459-463. QIAN Zhengwen, CHENG Li, LI Yinghong. Using Singular Value Decomposition of the Signal Noise Reduction Method[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4):459-463. [31] 王建国, 李健, 刘颖源. 一种确定奇异值分解降噪有效秩阶次的改进方法[J]. 振动与冲击, 2014, 33(12):176-180. WANG Jianguo, LI Jian, LIU Yingyuan. An Improved Method for Determining Effective Order Rank of SVD Denoising[J]. Journal of Vibration and Shock, 2014, 33(12):176-180. [32] VU V. A Simple SVD Algorithm for Finding Hidden Partitions[EB/OL]. (2014-04-07).[2016-01-30]. http://adsabs.harvard.edu/abs/2014arXiv1404.3917v. |