测绘学报 ›› 2017, Vol. 46 ›› Issue (5): 649-657.doi: 10.11947/j.AGCS.2017.20150506

• 地图学与地理信息 • 上一篇    下一篇

Voronoi邻近关系支持下的点模式趋同提取方法

康顺1, 李佳田2, 武昊3   

  1. 1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    2. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    3. 国家基础地理信息中心, 北京 100830
  • 收稿日期:2015-10-12 修回日期:2017-03-10 出版日期:2017-06-20 发布日期:2017-06-05
  • 作者简介:康顺(1987-),男,博士生,研究方向为Voronoi空间关系建模与计算。E-mail:kangshun_cumt@126.com
  • 基金资助:
    国家自然科学基金(41561082;41161061)

An Extraction Method for Point Pattern Convergence under Voronoi Adjacency Relation

KANG Shun1, LI Jiatian2, WU Hao3   

  1. 1. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
    2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    3. National Geomatics Center of China, Beijing 100830, China
  • Received:2015-10-12 Revised:2017-03-10 Online:2017-06-20 Published:2017-06-05
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41561082;41161061)

摘要: 点模式及其趋同研究是揭示地学现象的产生、发展与演变,量化空间相似性分布、诠释空间分布成因的重要方式。目前,点模式研究侧重于已知频率与随机分布的一元独立性检验、距离测度下单观测值的二元相关性分析,而针对集聚过程相关性,空间拓扑与非拓扑邻近、综合多观测值的点模式趋同量化研究顾及不足。据此,以空间邻近性聚类、局部相关的多指标评价为切入点,本文提出了一种Voronoi邻近关系支持下的点模式趋同提取方法。首先,以Voronoi邻近相关表集聚算法剖分出空间独立性点模式;其次,依据Voronoi邻近关系指数测度、样本分布均值与分布方差的趋同假设,使用拉普拉斯平滑算子评价趋同度;最后,依据λ截矩阵,提取出Voronoi邻近、非Voronoi邻近关系支持下的强趋同点模式。试验以云南省腾冲市居民点数据为算例,经与点模式构建的聚类方法对比、趋同度计算与强趋同提取,验证了该方法的可行性与有效性。

关键词: 点模式, Voronoi邻近关系, 相关性, 趋同假设, 拉普拉斯平滑

Abstract: Point pattern convergence exerts a fundamental way in quantifying similar spatial patterns, which plays an essential function in revealing geographical phenomena emergence, development and evolution. Nevertheless, the independence test for traditional unary point pattern was based on a given frequency or random distribution. Moreover, the local correlation analysis for binary point pattern was focused on single observation and the surroundings were measured by Euclidean distance. Hereto, the issues on correlation in clustering, comprehensive convergence quantization for the point pattern under multiple observations and topological adjacency and non-adjacency relations need to be addressed. In facets of adjacency clustering and local convergence values over the criteria of spatial pattern, an extraction method for point pattern convergence under Voronoi adjacency relation was proposed. Firstly, independent spatial point patterns were tessellated using a clustering algorithm based on the Voronoi Adjacency Correlation Table, abbr. VACT. Secondly, the Nearest Neighbor Index was calculated through the Voronoi Adjacency Index algorithm, VAI for short, and in combination with the hypothesis testing results including mean distance and variance, the comprehensive convergence hypothesis was quantified via Laplace smoothing. Thirdly, according to λ truncated matrix, the strong convergent point patterns were extracted under the support of Voronoi adjacency and non-adjacency relations. Last but not least, taking the resident point set of Tengchong Yunnan for example, through point pattern construction and comparison, convergence calculation and strong convergence extraction, this method was evaluated to be promising.

Key words: point pattern, Voronoi adjacency relation, correlation, convergence hypothesis, Laplace smoothing

中图分类号: