[1] SU Huaizhi, LI Xing, YANG Beibei, et al. Wavelet support vector machine-based prediction model of dam deformation[J]. Mechanical Systems and Signal Processing, 2018, 110:412-427. [2] CHEN Huangqiong, ZENG Zhigang. Deformation prediction of landslide based on improved back-propagation neural network[J]. Cognitive Computation, 2013, 5(1):56-62. [3] 王新洲, 范千, 许承权, 等. 基于小波变换和支持向量机的大坝变形预测[J]. 武汉大学学报(信息科学版), 2008, 33(5):469-471, 507. WANG Xinzhou, FAN Qian, XU Chengquan, et al. Dam deformation prediction based on wavelet transform and support vector machine[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):469-471, 507. [4] LIU Haifeng, REN Chao, ZHENG Zhongtian, et al. Study of a gray genetic BP neural network model infault monitoring and a diagnosis system fordam safety[J]. International Journal of Geo-Information, 2018, 7(4):1-19. [5] WANG Xiaoyu, KANG Kan, SHEN Changsong. Study on MPGA-BP of gravity dam deformation prediction[J]. Mathematical Problems in Engineering, 2017, 2017:2586107. [6] 钱程, 李连基, 周子东. 基于GM-ANN组合模型的大坝变形监测数据分析方法[J]. 中国农村水利水电, 2015(10):157-159, 162. QIAN Cheng, LI Lianji, ZHOU Zidong. Dam deformation monitoring data analysis method based on GM-ANN model[J]. China Rural Water and Hydropower, 2015(10):157-159, 162. [7] 邢尹, 陈闯, 刘立龙, 等. 改进遗传算法和BP神经网络的大坝变形预测[J]. 计算机工程与设计, 2018, 39(8):2628-2631, 2686. XING Yin, CHEN Chuang, LIU Lilong, et al. Dam deformation prediction based on improved genetic algorithm and BP neural network[J]. Computer Engineering and Design, 2018, 39(8):2628-2631, 2686. [8] 马琳, 马福恒, 范振东, 等. SVM大坝变形监测模型研究[J]. 中国农村水利水电, 2015(5):144-147. MA Lin, MA Fuheng, FAN Zhendong, et al. Dam deformation monitoring model based on improved MMA-SVM[J]. China Rural Water and Hydropower, 2015(5):144-147. [9] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/3):489-501. [10] LIAN Cheng, ZENG Zhigang, YAO Wei, et al. Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(8):1957-1972. [11] KANG Fei, LIU Jia, LI Junjie, et al. Concrete dam deformation prediction model for health monitoring based on extreme learning machine[J]. Structural Control and Health Monitoring, 2017, 24(10):e1997. [12] 廉城, 曾志刚, 苏义鑫, 等. 基于误差修正EOS-ELM的滑坡位移预测[J]. 华中科技大学学报(信息科学版), 2017, 45(9):52-57. LIAN Cheng, ZENG Zhigang, SU Yixin, et al. Landslide displacement prediction based on error correction and ensemble of online sequential extreme learning machine[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2017, 45(9):52-57. [13] 张海龙, 范振东. 基于改进PSO-ELM算法的混凝土坝变形非线性监控模型[J]. 水电能源科学, 2018, 36(1):82-84, 199. ZHANG Hailong, FAN Zhendong. Nonlinear monitoring model of concrete dam deformation based on improved PSO-ELM algorithm[J]. Water Resources and Power, 2018, 36(1):82-84, 199. [14] 邓万宇, 郑庆华, 陈琳, 等. 神经网络极速学习方法研究[J]. 计算机学报, 2010, 33(2):279-287. DENG Wanyu, ZHENG Qinghua, CHEN Lin, et al. Research on extreme learning of neural networks[J]. Chinese Journal of Computers, 2010, 33(2):279-287. [15] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529. [16] 魏冠军, 党亚民, 章传银, 等. 顾及不确定性影响的变形概率预报法[J]. 测绘学报, 2017, 46(4):526-532. DOI:10.11947/j.AGCS.2017.20160531. WEI Guanjun, DANG Yamin, ZHANG Chuanyin, et al. Method of deformation probability prediction considering the influence of uncertainty factors[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4):526-532. DOI:10.11947/j.AGCS.2017.20160531. [17] SORIA-OLIVAS E, GOMEZ-SANCHIS J, MARTIN J D, et al. BELM:Bayesian extreme learning machine[J]. IEEE Transactions on Neural Networks, 2011, 22(3):505-509. [18] NING Kefeng, LIU Min, DONG Mingyu. A new robust ELM method based on a Bayesian framework with heavy-tailed distribution and weighted likelihood function[J]. Neurocomputing, 2015, 149:891-903. [19] 邓兴升, 王新洲. 动态模糊神经网络在大坝变形预报中的应用[J]. 水电自动化与大坝监测, 2007, 31(2):64-67. DENG Xingsheng, WANG Xinzhou. Application of dynamic fuzzy neural network to dam deformation prediction[J]. Hydropower Automation and Dam Monitoring, 2007, 31(2):64-67. [20] MA Junshui, THEILER J, PERKINS S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11):2683-2703. [21] LUO Jiahua, VONG C M, WONG P K. Sparse Bayesian extreme learning machine for multi-classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4):836-843. [22] 韩敏, 李德才. 基于替代函数及贝叶斯框架的1范数ELM算法[J]. 自动化学报, 2011, 37(11):1344-1350. HAN Min, LI Decai. An norm 1 regularization term ELM algorithm based on surrogate function and Bayesian framework[J]. Acta Automatica Sinica, 2011, 37(11):1344-1350. [23] CHEN Yarui, YANG Jucheng, WANG Chao, et al. Variational Bayesian extreme learning machine[J]. Neural Computing and Applications, 2016, 27(1):185-196. [24] BISHOP C. Pattern recognition and machine learning[M]. New York:Springer, 2006. [25] CHEN Tao, MARTIN E. Bayesian linear regression and variable selection for spectroscopic calibration[J]. Analytica Chimica Acta, 2009, 631(1):13-21. |