[1] 徐祥德, 赵天良, LU Chungu, 等. 青藏高原大气水分循环特征[J]. 气象学报, 2014, 72(6):1079-1095. XU Xiangde, ZHAO Tianliang, LU Chungu, et al. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteorologica Sinica, 2014, 72(6):1079-1095. [2] 苗长明, 丁一汇, 郭品文, 等. 水汽输送与江南南部初夏雨季及降水变化的联系[J]. 气象学报, 2015, 73(1):72-83. MIAO Changming, DING Yihui, GUO Pinwen, et al. Linkage of the water vapor transport distribution with the rainy season and its precipitation in the southern regions south of the Yangtze River during the early summer[J]. Acta Meteorologica Sinica, 2015, 73(1):72-83. [3] LOO Y Y, BILLA L, SINGH A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia[J]. Geoscience Frontiers, 2015, 6(6):817-823. [4] ECKSTEIN D, KVNZEL V, SCHÄFER L. Global climate risk index 2018:who suffers most from extreme weather events? Weather-related loss events in 2016 and 1997 to 2016[R]. Berlin, Germany:German Watch, 2017. [5] IPCC. Summary for policymakers[M]//STOCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013:The Physical Science Basis. Cambridge:Cambridge University Press, 2013:1-29. [6] 黄荣辉, 陈际龙, 周连童, 等. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 2003, 27(4):770-787. HUANG Ronghui, CHEN Jilong, ZHOU Liantong, et al. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4):770-787. [7] 张婷, 魏凤英. 华南地区汛期极端降水的概率分布特征[J]. 气象学报, 2009, 67(3):442-451. ZHANG Ting, WEI Fengying. Probability distribution of precipitation extremes during raining seasons in South China[J]. Acta Meteorologica Sinica, 2009, 67(3):442-451. [8] 秦大河. 中国极端天气气候事件和灾害风险管理与适应国家评估报告[M]. 北京:科学出版社, 2015. QIN Dahe. China national assessment report on risk management and adaption of climate extremes and disasters[M]. Beijing:Science Press, 2015. [9] MASUD M B, SONI P, SHRESTHA S, et al. Changes in climate extremes over north Thailand, 1960-2099[J]. Journal of Climatology, 2016, 2016:4289454. [10] 翟盘茂. 全球变暖背景下的气候服务[J]. 气象, 2011, 37(3):257-262. ZHAI Panmao. Climate service under climate warming background[J]. Meteorological Monthly, 2011, 37(3):257-262. [11] 史培军, 孔锋, 方佳毅. 中国年代际暴雨时空变化格局[J]. 地理科学, 2014, 34(11):1281-1290. SHI Peijun, KONG Feng, FANG Jiayi. Spatio-temporal patterns of china decadal storm rainfall[J]. Scientia Geographica Sinica, 2014, 34(11):1281-1290. [12] CEC. CalWater 2:precipitation, aerosols, and pacific atmospheric rivers experiment[M].[S.l.]:California Energy Commission, 2012:22. [13] GUERREIRO S B, FOWLER H J, BARBERO R, et al. Detection of continental-scale intensification of hourly rainfall extremes[J]. Nature Climate Change, 2018, 8(9):803-807. [14] Benjamin S G, BROWN J M, BRUNET G, et al. 100 years of progress in forecasting and NWP applications[J]. Meteorological Monographs, 2018, 59:13.1-13.67. doi:10.1175/AMSMONOGRAPHS-D-18-0020.1 [15] BEVIS M, BUSINGER S, CHISWELL S, et al. GPS meteorology:mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994, 33(3):379-386. [16] 赵庆志. 地基GNSS水汽反演关键技术研究及其应用[J]. 测绘学报, 2018, 47(3):424. DOI:10.11947/j.AGCS.2018.20170427. ZHAO Qingzhi. Studies on the key technologies in water vapor inversion using ground-based GNSS and its applications[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):424. DOI:10.11947/j.AGCS.2018.20170427. [17] YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. [18] SEIDEL D J, BERGER F H, DIAMOND H J, et al. Reference upper-air observations for climate:rationale, progress, and plans[J]. Bulletin of the American Meteorological Society, 2009, 90(3):361-369. [19] TRAKOLKUL C, SATIRAPOD C. Variations of precipitable water vapor using GNSS CORS in Thailand[J]. Survey Review, 2020. DOI:10.1080/00396265.2020.1713611. [20] LI Min, LI Wenwen, SHI Chuang, et al. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach[J]. Advances in Space Research, 2015, 55(1):150-162. [21] LU Cuixian, LI Xingxing, NILSSON T, et al. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations[J]. Journal of Geodesy, 2015, 89(9):843-856. [22] GRIFFITHS J. Combined orbits and clocks from IGS second reprocessing[J]. Journal of Geodesy, 2019, 93(2):177-195. [23] LANDSKRON D, BÖHM J. VMF3/GPT3:refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2019, 92(4):349-360. [24] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597. [25] 张卫星. 中国区域融合地基GNSS等多种资料水汽反演、变化分析及应用[D]. 武汉:武汉大学, 2016. ZHANG Weixing. Water vapor retrieval, variation analysis and applications over China using ground-based GNSS and multiple data[D]. Wuhan:Wuhan University, 2016. [26] ZHANG Weixing, LOU Yidong, HAASE J S, et al. The use of ground-based GPS precipitable water measurements over china to assess radiosonde and ERA-interim moisture trends and errors from 1999 to 2015[J]. Journal of Climate, 2017, 30(19):7643-7667. [27] SAASTAMOINEN J. Contributions to the theory of atmospheric refraction[J]. Bulletin Géodésique, 1972, 105(1):279-298. [28] ZHANG Weixing, LOU Yidong, HUANG Jinfang, et al. Multiscale variations of precipitable water over China based on 1999-2015 ground-based GPS observations and evaluations of reanalysis products[J]. Journal of Climate, 2018, 31(3):945-962. |