Acta Geodaetica et Cartographica Sinica ›› 2021, Vol. 50 ›› Issue (1): 37-51.doi: 10.11947/j.AGCS.2021.20200047
• Geodesy and Navigation • Previous Articles Next Articles
ZHAO Jing1,2, ZHAN Wei3, REN Jinwei4, JIANG Zaisen4, GU Tie5, LIU Jie2, NIU Anfu2, YUAN Zhengyi2
Received:
2020-02-14
Revised:
2020-11-05
Published:
2021-01-15
Supported by:
CLC Number:
ZHAO Jing, ZHAN Wei, REN Jinwei, JIANG Zaisen, GU Tie, LIU Jie, NIU Anfu, YUAN Zhengyi. GPS time series inversion of the healing process of the middle segment of the Longmenshan fault after the 2008 Wenchuan earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 37-51.
[1] MARONE C, VIDALE J E, ELLSWORTH W L. Fault healing inferred from time dependent variations in source properties of repeating earthquakes[J]. Geophysical Research Letters, 1995, 22(22):3095-3098. [2] TADOKORO K, ANDO M. Evidence for rapid fault healing derived from temporal changes in S wave splitting[J]. Geophysical Research Letters, 2002, 29(4):6-1-6-4. [3] DIETERICH J H. Time-dependent friction in rocks[J]. Journal of Geophysical Research, 1972, 77(20):3690-3697. [4] GRATIER J P. Fault permeability and strength evolution related to fracturing and healing episodic processes (years to millennia):the role of pressure solution[J]. Oil & Gas Science and Technology, 2011, 66(3):491-506. [5] KARNER S L, MARONE C, EVANS B. Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions[J]. Tectonophysics, 1997, 277(1-3):41-55. [6] MCLASKEY G C, THOMAS A M, GLASER S D, et al. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults[J]. Nature, 2012, 491(7422):101-104. [7] XUE Lian, LI Haibing, BRODSKY E E, et al. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone[J]. Science, 2013, 340(6140):1555-1559. [8] BEELER N M, HICKMAN S H, WONG T F. Earthquake stress drop and laboratory-inferred interseismic strength recovery[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B12):30701-30713. [9] NAKATANI M, SCHOLZ C H. Intrinsic and apparent short-time limits for fault healing:theory, observations, and implications for velocity-dependent friction[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B12):B12208. [10] 中国地质科学院. 中国地质调查局、中国地质科学院2014年度地质科技十大进展新鲜出炉[J]. 地球学报, 2015, 36(1):1-5. Chinese Academy of Geological Sciences. Top ten geological sci-tech progresses of China geological survey (CGS) and Chinese Academy of Geological Sciences (CAGS) in the year 2014 unveiled[J]. Acta Geoscientica Sinica, 2015, 36(1):1-5. [11] MARONE C. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle[J]. Nature, 1998, 391(6662):69-72. [12] 姜卫平, 周晓慧, 刘经南, 等. 青藏高原地壳运动与应变的GPS监测研究[J]. 测绘学报, 2008, 37(3):285-292. DOI:10.3321/j.issn:1001-1595.2008.03.005. JIANG Weiping, ZHOU Xiaohui, LIU Jingnan, et al. Present-day crustal movement and strain rate in the Qinghai-Tibetan Plateau from GPS data[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):285-292. DOI:10.3321/j.issn:1001-1595.2008.03.005. [13] PEI Shunping, NIU Fenglin, BEN-ZION Y, et al. Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault[J]. Nature Geoscience, 2019, 12(5):387-392. [14] 刘雁冰, 裴顺平. 汶川地震前后b值的时空变化及构造意义[J]. 地球物理学报, 2017, 60(6):2104-2112. LIU Yanbing, PEI Shunping. Temporal and spatial variation of b-value before and after Wenchuan earthquake and its tectonic implication[J]. Chinese Journal of Geophysics, 2017, 60(6):2104-2112. [15] 姚路. 龙门山断裂带断层泥中速-高速摩擦性质的实验研究[D]. 北京:中国地震局地质研究所, 2013. YAO Lu. Experimental studies on intermediate-to high-velocity frictional properties of fault gouges from the Longmenshan fault zone[D]. Beijing:Institute of Geology, China Earthquake Administration, 2013. [16] CHEN Jianye, VERBERNE B A, SPIERS C J. Effects of healing on the seismogenic potential of carbonate fault rocks:experiments on samples from the Longmenshan Fault, Sichuan, China[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(8):5479-5506. [17] MCCAFFREY R. Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia[J]. Geophysical Research Letters, 2009, 36(7):L07304. [18] DIXON T H, JIANG Yan, MALSERVISI R, et al. Earthquake and tsunami forecasts:relation of slow slip events to subsequent earthquake rupture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48):17039-17044. [19] GRAHAM S E, DEMETS C, CABRAL-CANO E, et al. GPS constraints on the 2011-2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico[J]. Geophysical Journal International, 2014, 197(3):1593-1607. [20] SCHMALZLE G M, MCCAFFREY R, CREAGER K C. Central Cascadia subduction zone creep[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4):1515-1532. [21] MCCAFFREY R. Interseismic locking on the Hikurangi subduction zone:uncertainties from slow-slip events[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(10):7874-7888. [22] GRAHAM S E, DEMETS C, CABRAL-CANO E, et al. GPS constraints on the Mw=7.5 Ometepec earthquake sequence, southern Mexico:coseismic and post-seismic deformation[J]. Geophysical Journal International, 2014, 199(1):200-218. [23] MCCAFFREY R. Crustal block rotations and plate coupling[M]//STEIN S, FREYMUELLER J T. Plate Boundary Zones. Washington:American Geophysical Union, 2002, 101-122. [24] SAVAGE J C, GAN Weijun, SVARC J L. Strain accumulation and rotation in the eastern California shear zone[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B10):21995-22007. [25] MCCAFFREY R, KING R W, PAYNE S J, et al. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(2):709-723. [26] 党亚民, 杨强, 梁诗明, 等. 川滇区域活动块体运动与应变特征地震影响分析[J]. 测绘学报, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. DANG Yamin, YANG Qiang, LIANG Shiming, et al. Block movement and strain characteristics effected by earthquake in Sichuan-Yunnan region[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):559-566. DOI:10.11947/j.AGCS.2018.20160311. [27] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2):219-275. XU Xiwei, WU Xiyan, YU Guihua, et al. Seismo-geological signatures for identifying M ≥ 7.0 earthquake risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 2017, 39(2):219-275. [28] 魏文薪, 江在森, 邹镇宇, 等. 芦山"4·20"7.0级地震同震位移场考证及地表变形模式初探[J].地震地质, 2014, 36(2):333-343. WEI Wenxin, JIANG Zaisen, ZOU Zhenyu, et al. Verification research on the coseismic displacement of the April 20, 2013, M7.0 Lushan earthquake and primary exploration of surface deformation mode[J]. Seismology and Geology, 2014, 36(2):333-343. [29] JIANG Zaisen, WANG Ming, WANG Yanzhao, et al. GPS constrained coseismic source and slip distribution of the 2013Mw6.6 Lushan, China, earthquake and its tectonic implications[J]. Geophysical Research Letters, 2014, 41(2):407-413. [30] HERRING T A, KING R W, MCCLUSKY S C. GAMIT reference manual[EB/OL].[2011-05-10]. http://www-gpsg.mit.edu/~simon/gtgk/index.htm. [31] HERRING T A, KING R W, MCCLUSKY S C. Global Kalman filter VLBI and GPS analysis program,GLOBK reference manual, release 10.4[EB/OL].[2011-05-10]. http://www-gpsg.mit.edu/~simon/gtgk/index.htm. [32] GENDT G. IGSMAIL5438:IGS switch to absolute antenna model and ITRF2005[EB/OL].[2006-12-30]. http://igscb.jpl.nasa.gov/mail/igsmail/2006/msg0. [33] LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides:modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5-6):394-415. [34] BOEHM J, NIELL A, TREGONING P, et al. Global mapping function (GMF):a new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33(7):L07304. [35] DONG Danan, HERRING T A, KING R W. Estimating regional deformation from a combination of space and terrestrial geodetic data[J]. Journal of Geodesy, 1998, 72(4):200-214. [36] ALTAMIMI Z, COLLILIEUX X, MÉTIVIER L. ITRF2008:an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8):457-473. [37] ZHAN Wei, LI Fei, HAO Weifeng, et al. Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan, China[J]. Geophysical Journal International, 2017, 210(3):1295-1304. [38] ZHANG Peizhen, WEN Xueze, SHEN Zhengkang, et al. Oblique, high-angle, listric-reverse faulting and associated development of strain:the Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Annual Review of Earth and Planetary Sciences, 2010, 38:353-382. [39] 赵静, 江在森, 武艳强, 等. 汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究[J]. 地球物理学报, 2012, 55(9):2963-2972. ZHAO Jing, JIANG Zaisen, WU Yanqiang, et al. Study on fault locking and fault slip deficit of the Longmenshan fault zone before the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(9):2963-2972. [40] WANG Qi, QIAO Xuejun, LAN Qigui, et al. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4(9):634-640. [41] 江在森, 方颖, 武艳强, 等. 汶川8.0级地震前区域地壳运动与变形动态过程[J]. 地球物理学报, 2009, 52(2):505-518. JIANG Zaisen, FANG Ying, WU Yanqiang, et al. The dynamic process of regional crustal movement and deformation before Wenchuan Ms8.0 earthquake[J]. Chinese Journal of Geophysics, 2009, 52(2):505-518. [42] 陈为涛. 汶川Ms8.0地震前后龙门山断裂周边地壳形变特征及地震危险性分析[J]. 国际地震动态, 2013(11):23-26. CHEN Weitao. Characteristics of crustal deformation around the Longmenshan fault before and after the Wenchuan Ms8.0 earthquake and seismic risk analysis[J]. Recent Developments in World Seismology, 2013(11):23-26. [43] 张清志, 唐文清, 刘宇平, 等. 基于高精度GPS监测龙门山断裂带中段及邻区现今地壳活动性研究[J]. 地球物理学进展, 2013, 28(1):190-198. ZHANG Qingzhi, TANG Wenqing, LIU Yuping, et al. Research of the activity along the central segment of the Longmenshan active faults and adjacent regions based on the high precision GPS monitoring[J]. Progress in Geophysics, 2013, 28(1):190-198. [44] 杜方, 闻学泽, 张培震, 等. 2008年汶川8.0级地震前横跨龙门山断裂带的震间形变[J]. 地球物理学报, 2009, 52(11):2729-2738. DU Fang, WEN Xueze, ZHANG Peizhen, et al. Interseismic deformation across the Longmenshan fault zone before the 2008M8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2009, 52(11):2729-2738. [45] MEADE B J, HAGER B H. Block models of crustal motion in southern california constrained by GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03403. [46] 武艳强, 江在森, 王敏, 等. GPS监测的芦山7.0级地震前应变积累及同震位移场初步结果[J]. 科学通报, 2013, 58(20):1910-1916. WU Yanqiang, JIANG Zaisen, WANG Min, et al. Preliminary results pertaining to coseismic displacement and preseismic strain accumulation of the Lushan Ms7.0 earthquake, as reflected by GPS surveying[J]. Chinese Science Bulletin, 2013, 58(28):3460-3466. [47] DIAO Faqi, WANG Rongjiang, WANG Yuebing, et al. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth and Planetary Science Letters, 2018, 495:202-212. [48] 赵静, 任金卫, 江在森, 等. 龙门山断裂带西南段闭锁与变形特征[J]. 地震研究, 2018, 41(2):216-225. ZHAO Jing, REN Jinwei, JIANG Zaisen, et al. Fault locking and deformation characteristics in southwestern segment of the Longmenshan fault[J]. Journal of Seismological Research, 2018, 41(2):216-225. [49] YU Huaizhong, ZHAO Jing, LIU Xiaoxia, et al. Distinct tectonic activities in Guangxi, China due to large earthquakes on the Longmenshan fault zone[J]. Physics of the Earth and Planetary Interiors, 2020, 307:106557. [50] 许志琴, 吴忠良, 李海兵, 等. 世界上最快回应大地震的汶川地震断裂带科学钻探[J]. 地球物理学报, 2018, 61(5):1666-1679. XU Zhiqin, WU Zhongliang, LI Haibing, et al. The most rapid respond to a large earthquake:the Wenchuan earthquake fault scientific drilling project[J]. Chinese Journal of Geophysics, 2018, 61(5):1666-1679. [51] NUR A, SIMMONS G. The effect of saturation on velocity in low porosity rocks[J]. Earth and Planetary Science Letters, 1969, 7(2):183-193. [52] 郭瑾, 闫小兵, 李自红, 等. 汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示[J]. 地质通报, 2019, 38(6):959-966. GUO Jin, YAN Xiaobing, LI Zihong, et al. Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake:implications for the mechanism of fault healing[J]. Geological Bulletin of China, 2019, 38(6):959-966. [53] 崔笃信, 胡亚轩, 王文萍, 等. 海原断裂带库仑应力积累[J]. 地球科学, 2009, 34(4):641-650. CUI Duxin, HU Yaxuan, WANG Wenping, et al. Coulomb stress accumulation along Haiyuan fault zone[J]. Earth Science, 2009, 34(4):641-650. [54] 杜方, 闻学泽, 张培震. 鲜水河断裂带炉霍段的震后滑动与形变[J]. 地球物理学报, 2010, 53(10):2355-2366. DU Fang, WEN Xueze, ZHANG Peizhen. Post-seismic slip and deformation on the Luhuo segment of the Xianshuihe fault zone[J]. Chinese Journal of Geophysics, 2010, 53(10):2355-2366. [55] 石富强, 邵志刚, 占伟, 等. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报, 2018, 61(9):3651-3663. SHI Fuqiang, SHAO Zhigang, ZHAN Wei, et al. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 2018, 61(9):3651-3663. [56] LI Yanchuan, SHAN Xinjian, QU Chunyan, et al. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan plateau[J]. Journal of Geodynamics, 2016, 102:47-57. [57] 尹力, 罗纲. 有限元数值模拟龙门山断裂带地震循环的地壳变形演化[J]. 地球物理学报, 2018, 61(4):1238-1257. YIN Li, LUO Gang. Crustal deformation across the Longmen Shan fault zone from finite element simulation of seismic cycles[J]. Chinese Journal of Geophysics, 2018, 61(4):1238-1257. [58] 丁开华, 许才军, 温扬茂. 汶川地震震后形变的GPS反演[J]. 武汉大学学报(信息科学版), 2013, 38(2):131-135. DING Kaihua, XU Caijun, WEN Yangmao. Postseismic deformation associated with the 2008 Wenchuan earthquake by GPS data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):131-135. [59] HU Yan, BVRGMANN R, UCHIDA N, et al. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(1):385-411. [60] XU C J, FAN Qingbiao, WANG Q, et al. Postseismic deformation after 2008 Wenchuan earthquake[J]. Survey Review, 2014, 46(339):432-436. [61] ZHAO Bin, BVRGMANN R, WANG Dongzhen, et al. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7.9 Gorkha, Nepal, earthquake[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(10):8376-8401. [62] MARONE C J, SCHOLTZ C H, BILHAM R. On the mechanics of earthquake afterslip[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B5):8441-8452. [63] WANG Lifeng, LIU Jie, ZHAO Jing, et al. Tempo-spatial impact of the 2011M9 Tohoku-Oki earthquake on eastern China[J]. Pure and Applied Geophysics, 2016, 173(1):35-47. [64] LI Yanchuan, ZHANG Guohong, SHAN Xinjian, et al. GPS-derived fault coupling of the Longmenshan fault associated with the 2008Mw 7.9 Wenchuan earthquake and its tectonic implications[J]. Remote Sensing, 2018, 10(5):753. [65] LIU Qiyuan, VAN DER HILST R D, LI Yu, et al. Eastward expansion of the Tibetan plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5):361-365. [66] HUANG Monghan, BVRGMANN R, FREED A M. Probing the lithospheric rheology across the eastern margin of the Tibetan plateau[J]. Earth and Planetary Science Letters, 2014, 396:88-96. |
[1] | YUAN Junjun, LI Kai, TANG Chengpan, ZHOU Shanshi, HU Xiaogong, CAO Jianfeng. Accuracy analysis of LEO satellites orbit prediction for precise position service [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 640-647. |
[2] | YANG Kaichun, LV Zhiping, LI Linyang, KUANG Yingcai, XU Wei, ZHENG Xi. Sliding window single-frequency real time precise point positioning algorithm with epoch constraints [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 648-657. |
[3] | ZHU Feng. GNSS/SINS/Vision multi-sensors integration for precise positioning and orientation determination [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 782-782. |
[4] | LIU Bin. Theory and method of spatiotemporal analysis, modeling and inversion of vertical GNSS coordinate time series based on independent component analysis [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 783-783. |
[5] | HUANG Gang. Research on automatic classification method of mobile laser point cloud data based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 786-786. |
[6] | CHAI Dashuai. Study on the theory and method in integrated navigation of multi-constellation GNSS/INS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 787-787. |
[7] | LIU Gen. Research on methodology and the key technology of uncombined ambiguity resolution for multi-frequency and multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 798-798. |
[8] | CHEN Junyu. Atmospheric mass density model calibration using tracking data of space objects [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 800-800. |
[9] | YAN Li. BeiDou/GPS combined precise positioning theory and algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 803-803. |
[10] | LI Linyang. Cloud computing method and application of large scale global GNSS network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 804-804. |
[11] | BAI Zhengwei, ZHANG Qin, HUANG Guanwen, JING Ce, WANG Jiaxing. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud” [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. |
[12] | LIU Bei, WANG Yong, LOU Zesheng, ZHAN Wei. The MODIS PWV correction based on CMONOC in Chinese mainland [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1207-1215. |
[13] | GAO Yunpeng, REN Tianpeng, DU Lan, CHEN Sirui, ZHANG Zhongkai. Quasi real-time monitoring of CE-5 inter-device separation based on same-beam interferometry [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1216-1224. |
[14] | HAN Songhui, ZHANG Guochao, ZHANG Ning, ZHU Jianqing. New algorithm for detecting AO outliers in AR model and its application in the prediction of GPS satellite clock errors [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1225-1235. |
[15] | SHAO Fan, WANG Xiaoya, HE Bing, ZHANG Jing. Effect analysis of the weighting scheme with modified FCM clustering algorithm on precision of SLR orbit determination [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1236-1243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||