[1] 吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌——可视计算与科学应用[M]. 北京: 科学出版社, 2017. WU Ziyin, YANG Fanlin, LI Shoujun, et al. High-resolution submarine geomorphology: visual computation and scientific applications[M]. Beijing: Science Press, 2017. [2] MENARD H W, SMITH S M. Hypsometry of ocean basin provinces[J]. Journal of Geophysical Research, 1966, 71(18): 4305-4325. [3] TITOV V, RABINOVICH A B, MOFJELD H O, et al. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 2005, 309(5743): 2045-2048. [4] GILLE S T. Mean sea surface height of the Antarctic circumpolar current from Geosat data: method and application[J]. Journal of Geophysical Research: Oceans, 1994, 99(C9): 18255-18273. [5] SMITH W H F. Introduction to this special issue on bathymetry from space[J]. Oceanography, 2004, 17(1): 6-7. [6] HSIAO Y S, KIM J W, KIM K B, et al. Bathymetry estimation using the gravity-geologic method: an investigation of density contrast predicted by the downward continuation method[J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22(3): 347-358. [7] 范雕, 李姗姗, 孟书宇, 等. 利用重力异常反演马里亚纳海沟海底地形[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1483-1492. FAN Diao, LI Shanshan, MENG Shuyu, et al. Inversion of Mariana Trench seabed terrain using gravity anomalies[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5): 1483-1492. [8] KIM J W, VON FRESE R R B, LEE B Y, et al. Altimetry-derived gravity predictions of bathymetry by the gravity-geologic method[J]. Pure and Applied Geophysics, 2011, 168(5): 815-826. [9] 李倩倩,鲍李峰. 测高重力场反演海底地形方法比较[J]. 海洋测绘. 2016, 36(5): 1-4. LI Qianqian, BAO Lifeng. Comparative analysis of method for bathymetry prediction from altimeter-derived gravity anomalies[J]. Hydrographic Surveying and Charting, 2016, 36(5): 1-4. [10] HU Minzhang, LI Jiancheng, LI Hui, et al. Predicting global seafloor topography using multi-source data[J]. Marine Geodesy, 2015, 38(2): 176-189. [11] 范雕, 李姗姗, 孟书宇, 等. 联合多源重力数据反演菲律宾海域海底地形[J]. 测绘学报, 2018, 47(10): 1307-1315. DOI: 10.11947/j.AGCS.2018.20170423. FAN Diao, LI Shanshan, MENG Shuyu, et al. Recovery of bathymetry over Philippine Sea by combination of multi-source gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1307-1315. DOI: 10.11947/j.AGCS.2018.20170423. [12] 欧阳明达, 孙中苗, 翟振和, 等. 采用重力异常的导纳理论推估海底地形[J]. 测绘学报, 2015, 44(10): 1092-1099. DOI: 10.11947/j.AGCS.2015.20140427. OUYANG Mingda, SUN Zhongmiao, ZHAI Zhenhe, et al. Bathymetry prediction based on the admittance theory of gravity anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1092-1099. DOI: 10.11947/j.AGCS.2015.20140427. [13] WATTS A B. An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor seamount chain[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B12): 5989-6004. [14] PARKER R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455. [15] SMITH W H F, SANDWELL D T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21803-21824. [16] 范雕, 李姗姗, 孟书宇, 等. 线性回归分析技术推估海底地形[J]. 中国惯性技术学报, 2018, 26(1): 24-32. FAN Diao, LI Shanshan, MENG Shuyu, et al. Predicting submarine topography by linear regression analysis[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 24-32. [17] 范雕, 李姗姗, 杨军军, 等. 利用多元回归分析反演西南印度洋区域海底地形[J]. 测绘学报, 2020, 49(2): 141-161. DOI: 10.11947/j.AGCS.2020.20180526. FAN Diao, LI Shanshan, YANG Junjun, et al. Predicting bathymetry by applying multiple regression analysis in the Southwest Indian Ocean Region[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 141-161. DOI: 10.11947/j.AGCS.2020.20180526. [18] CALMANT S. Seamount topography by least-squares inversion of altimetric geoid heights and shipborne profiles of bathymetry and/or gravity anomalies[J]. Geophysical Journal International, 1994, 119(2): 428-452. [19] RAMILLIEN G, WRIGHT I C. Predicted seafloor topography of the New Zealand region: a nonlinear least squares inversion of satellite altimetry data[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B7): 16577-16590. [20] YANG Junjun, JEKELI C, LIU Lintao. Seafloor topography estimation from gravity gradients using simulated annealing[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6958-6975. [21] FAN Diao, LI Shanshan, MENG Shuyu, et al. Applying iterative method to solving high-order terms of seafloor topography[J]. Marine Geodesy, 2020, 43(1): 63-85. [22] 范雕. 卫星测高重力数据反演海底地形的理论和方法研究[D]. 郑州: 信息工程大学, 2018. FAN Diao. Research on the theory and method of bathymetry prediction using satellite altimetry gravity data[D]. Zhengzhou: Information Engineering University, 2018. [23] YANG Junjun. Seafloor topography estimation from gravity gradients[D]. Columbus, OH: The Ohio State University, 2017. [24] 李姗姗, 吴晓平, 张传定, 等. 我国重力场新的统计特征参数的计算分析[J]. 地球物理学报, 2010, 53(5): 1099-1108. LI Shanshan, WU Xiaoping, ZHANG Chuanding, et al. Calculation and analysis of the new statistical character parameters of gravity field in China[J]. Chinese Journal of Geophysics, 2010, 53(5): 1099-1108. [25] 范雕, 李姗姗, 孟书宇, 等. 不同均衡补偿模式下海底地形反演方法比较分析[J]. 中国惯性技术学报, 2019, 27(1): 51-59. FAN Diao, LI Shanshan, MENG Shuyu, et al. Comparison and analysis on seafloor topography inversion methods with different isostatic compensation models[J]. Journal of Chinese Inertial Technology, 2019, 27(1): 51-59. [26] KIM K B, LEE C K. Bathymetry change investigation of the 2011 Tohoku earthquake[J]. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2015, 33(3): 181-192. [27] HU Minzhang, LI Jiancheng, LI Hui, et al. Bathymetry predicted from vertical gravity gradient anomalies and ship soundings[J]. Geodesy and Geodynamics, 2014, 5(1): 41-46. [28] FAN Diao, LI Shanshan, MENG Shuyu, et al. Bathymetric prediction from multi-source satellite altimetry gravity data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 49-58. [29] KIM K B, HSIAO Y S, KIM J W, et al. Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4): 285-298. [30] WATTS A B, BODINE J H, RIBE N M. Observations of flexure and the geological evolution of the Pacific Ocean basin[J]. Nature, 1980, 283(5747): 532-537. [31] HIRT C, REXER M. Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models-available as gridded data and degree-10 800 spherical harmonics[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39(7): 103-112. [32] HOLMES S A, FEATHERSTONE W E. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions[J]. Journal of Geodesy, 2002, 76(5): 279-299. [33] 李姗姗, 赵东明, 张传定, 等. 大地重力学[M]. 北京: 解放军出版社, 2015. LI Shanshan, ZHAO Dongming, ZHANG Chuanding, et al. Theory on gravimetry [M]. Beijing: Chinese People’s Liberation Army Publishing House, 2015. [34] 李新星. 超高阶地球重力场模型的构建[D]. 郑州: 信息工程大学, 2013. LI Xinxing. Building of an ultra-high-degree geopotential model[D]. Zhengzhou: Information Engineering University, 2013. [35] 张传定, 吴晓平. 非心摄动引力的快速计算方法研究[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 87-90. ZHANG Chuanding, WU Xiaoping. Fast computation method of non-central perturbation force[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 87-90. [36] 于锦海, 曾艳艳, 朱永超, 等. 超高阶次Legendre函数的跨阶数递推算法[J]. 地球物理学报, 2015, 58(3): 748-755. YU Jinhai, ZENG Yanyan, ZHU Yongchao, et al. A recursion arithmetic formula for Legendre functions of ultra-high degree and order on every other degree[J]. Chinese Journal of Geophysics, 2015, 58(3): 748-755. [37] 黄谟涛, 翟国君, 欧阳永忠, 等. 利用卫星测高资料反演海底地形研究[J]. 武汉大学学报(信息科学版), 2002, 27(2): 133-137. HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, et al. The recovery of bathymetry from altimeter data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 133-137. [38] 黄谟涛, 翟国君, 欧阳永忠, 等. 卫星测高资料在反演海底地形中的应用[J]. 海洋测绘, 2002, 22(1): 3-7. HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, et al. On the application of altimeter data to the recovery of bathymetry[J]. Hydrographic Surveying and Charting, 2002, 22(1): 3-7. [39] 胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6): 558-565, 574. DOI: 10.13485/jc.nki1.1-20892.0140.090. HU Minzhang, LI Jiancheng, XING Lelin. Global bathymetry model predicted from vertical gravity gradient anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 558-565, 574. DOI: 10.13485/jc.nki1.1-20892.0140.090. [40] SMITH W H F, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956-1962. [41] MARKS K M, SMITH W H F. An uncertainty model for deep ocean single beam and multibeam echo sounder data[J]. Marine Geophysical Researches, 2008, 29(4): 239-250. [42] MARKS K M, SMITH W H F. Radially symmetric coherence between satellite gravity and multibeam bathymetry grids[J]. Marine Geophysical Research, 2012, 33(3): 223-227. [43] MARKS K M, SMITH W H F, SANDWELL D T. Significant improvements in marine gravity from ongoing satellite missions[J]. Marine Geophysical Research, 2013, 34(2): 137-146. [44] WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools: improved version released[J]. Eos, Transactions, American Geophysical Union, 2013, 94(45): 409-410. [45] KIM K B, YUN H S. Satellite-derived bathymetry prediction in shallow waters using the gravity-geologic method: a case study in the West Sea of Korea[J]. Ksce Journal of Civil Engineering, 2018, 22(3): 2560-2568. |