[1] 联合国. 可持续发展目标[EB/OL].[2021-01-30]. https://www.un.org/sustainabledevelopment/zh/. United Nations. Sustainable development goals[EB/OL].[2021-01-30]. https://www.un.org/sustainabledevelopment/zh/. [2] 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481. DOI:10.11947/j.AGCS.2019.20190437. LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481. DOI:10.11947/j.AGCS.2019.20190437. [3] 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. [4] 刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4):403-414. DOI:10.11947/j.AGCS.2020.20190539. LIU Jingnan, GUO Wenfei, GUO Chi, et al. Rethinking ubiquitous mapping in the intelligent age[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):403-414. DOI:10.11947/j.AGCS.2020.20190539. [5] 王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12):1586-1594. DOI:10.11947/j.AGCS.2019.20190454. WANG Mi, YANG Fang. Intelligent remote sensing satellite and remote sensing image real-time service[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1586-1594. DOI:10.11947/j.AGCS.2019.20190454. [6] 杨晓霞, 徐婷, 李少达, 等. 用户模型驱动的遥感信息智能服务方法[J]. 测绘学报, 2015, 44(11):1285-1294. DOI:10.11947/j.AGCS.2015.20140413. YANG Xiaoxia, XU Ting, LI Shaoda, et al. A user profile-driven intelligent service of remote sensing information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1285-1294. DOI:10.11947/j.AGCS.2015.20140413. [7] 秦大河, 姚檀栋, 丁永建, 等. 面向可持续发展的冰冻圈科学[J]. 冰川冻土, 2020, 42(1):1-10. QIN Dahe, YAO Tandong, DING Yongjian, et al. The Cryospheric science for sustainable development[J]. Journal of Glaciology and Geocryology, 2020, 42(1):1-10. [8] QIN Dahe, DING Yongjian, XIAO Cunde, et al. Cryospheric science:research framework and disciplinary system[J]. National Science Review, 2018, 5(2):255-268. [9] 秦大河, STOCKER T. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1):1-6. QIN Dahe, STOCKER T. Highlights of the IPCC working group Ⅰ fifth assessment report[J]. Climate Change Research, 2014, 10(1):1-6. [10] STOCKER T, PLATTNER G K, QIN Dahe. IPCC climate change 2013:the physical science basis-findings and lessons learned[C]//EGU General Assembly Conference. Vienna:EGU, 2014. [11] TONG Xiaohua, LIU Shuang, LI Rongxing, et al. Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica[J]. Remote Sensing of Environment, 2018, 204:122-137. [12] CUI Xiangbin, DU Wenjia, XIE Huan, et al. The ice flux to the Lambert Glacier and Amery Ice Shelf along the Chinese inland traverse and implications for mass balance of the drainage basins, East Antarctica[J]. Polar Research, 2020, 39:3582-3600. [13] LI Rongxing, YE Wenkai, QIAO Gang, et al. A new analytical method for estimating Antarctic ice flow in the 1960s from historical optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2771-2785. [14] QIAO Gang, LI Yanjun, GUO Song, et al. Evolving instability of the scar inlet ice shelf based on sequential Landsat images spanning 2005-2018[J]. Remote Sensing, 2020, 12(1):1-20. [15] XIE Huan, CHEN Lei, LIU Shuang, et al. A least-squares adjusted grounding line for the amery ice shelf using ICESat and landsat 8 OLI data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11):5113-5122. [16] PARKINSO C L, CAVALIERI D J. Antarctic sea ice variability and trends, 1979-2010[J]. Cryosphere, 2012, 6(4):871-880. [17] SHI Qian, YANG Qinghua, MU Longjiang, et al. Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea[J]. The Cryosphere, 2021, 15(1):31-47. [18] LU Ping, HAN Jiangping, HAO Tong, et al. Seasonal deformation of permafrost in wudaoliang basin in Qinghai-Tibet plateau revealed by StaMPS-InSAR[J]. Marine Geodesy, 2020, 43(3):248-268. [19] LU Ping, HAN Jiangping, LI Zhenshi, et al. Lake outburst accelerated permafrost degradation on Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2020, 249:112011. [20] FENG Tiantian, MI Huan, SCAIONI M, et al. Measurement of surface changes in a scaled-down landslide model using high-speed stereo image sequences[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(7):547-557. [21] 钱七虎, 陈志龙. 二十一世纪地下空间开发利用展望[J]. 工程兵工程学院学报, 1997, 12(3):1-8. QIAN Qihu, CHEN Zhilong. The prospect of development and utilization of underground space in 21th century[J]. Journal of Nanjing Engineering Institute, 1997, 12(3):1-8. [22] 王梦恕. 二十一世纪是城市地下空间开发利用的年代[J]. 民防苑, 2006(S1):6-7. WANG Mengshu. The 21st century is an era of urban underground space development and utilization[J]. Civil Defence Realm, 2006(S1):6-7. [23] 国务院.国家新型城镇化规划(2014-2020年)[EB/OL].[2020-01-30]. http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm. National new urbanization planning (2014-2020)[EB/OL].[2020-01-30]. http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm. [24] 联合国.联合国人类发展报告(2020)[EB/OL].[2020-01-30]. http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm. United Nations. Human Development Report 2020[EB/OL].[2020-01-30]. http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm. [25] QIAN Qihu. Present state, problems and development trends of urban underground space in China[J]. Tunnelling and Underground Space Technology, 2016, 55:280-289. [26] 王成善, 周成虎, 彭建兵, 等. 论新时代我国城市地下空间高质量开发和可持续利用[J]. 地学前缘, 2019, 26(3):1-8. WANG Chengshan, ZHOU Chenghu, PENG Jianbing, et al. A discussion on high-quality development and sustainable utilization of China's urban underground space in the new era[J]. Earth Science Frontiers, 2019, 26(3):1-8. [27] 王丹, 耿丹, 江贻芳. 城市地下空间测绘及其标准化探索[J]. 测绘通报, 2018(7):97-100. DOI:10.13474/j.cnki.11-2246.2018.0219. WANG Dan, GENG Dan, JIANG Yifang. On surveying and mapping for urban underground space and its standardization[J]. Bulletin of Surveying and Mapping, 2018(7):97-100. DOI:10.13474/j.cnki.11-2246.2018.0219. [28] 宋玉香, 张诗雨, 刘勇, 等. 城市地下空间智慧规划研究综述[J]. 地下空间与工程学报, 2020, 16(6):1611-1621, 1645. SONG Yuxiang, ZHANG Shiyu, LIU Yong, et al. Review on urban underground space smart planning studies[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6):1611-1621, 1645. [29] STOCKER T F, QIN Dahe, PLATTNER G K, et al. AR5 climate change 2013:the physical science basis[R]. Geneva:Intergovernmental Panel on Climate Change, 2014. [30] IPCC. Special report on the ocean and cryosphere in a changing climate[EB/OL].[2020-01-30]. https://www.ipcc.ch/srocc. [31] 效存德, 苏勃, 窦挺峰, 等. 极地系统变化及其影响与适应新认识[J]. 气候变化研究进展, 2020, 16(2):153-162. XIAO Cunde, SU Bo, DOU Tingfeng, et al. Interpretation of IPCC SROCC on polar system changes and their impacts and adaptations[J]. Climate Change Research, 2020, 16(2):153-162. [32] 崔红艳. 北极海冰变化对北半球气候影响研究[D]. 青岛:中国海洋大学, 2014. CUI Hongyan. Research the impact of Declining Arctic sea ice on Climate change in Northern Hemisphere[D]. Qingdao:Ocean University of China, 2014. [33] CARDELLACH E, WICKERT J, BAGGEN R, et al. GNSS transpolar earth reflectometry exploring system (G-TERN):mission concept[J]. IEEE Access, 2018, 6:13980-14018. [34] 程国栋, 何平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3):213-217. CHENG Guodong, HE Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3):213-217. [35] HAO T, ROGERS C D F, METJE N, et al. Condition assessment of the buried utility service infrastructure[J]. Tunnelling and Underground Space Technology, 2012, 28:331-344. [36] ZHOU Xiren, CHEN Huanhuan, HAO Tong. Efficient detection of buried plastic pipes by combining GPR and electric field methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):3967-3979. [37] HAO Tong, ZHENG Wuan, HE Wenchao, et al. Air-ground impedance matching by depositing metasurfaces for enhanced GPR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4061-4075. [38] SHI Ruchuan, ZHANG Chenrui, QIN Peng, et al. SAW tags with enhanced penetration depth for buried assets identification[J]. IEEE Transactions on Industrial Electronics, 2020. DOI:10.1109/TIE.2020.3018056. (early access) [39] TRANG H T H, DUNG L T, HWANG S O. Connectivity analysis of underground sensors in wireless underground sensor networks[J]. Ad Hoc Networks, 2018, 71:104-116. [40] XIE Huan, LI Rongxing, TONG Xiaohua, et al. A comparative study of changes in the Lambert Glacier/Amery Ice Shelf System, East Antarctica, during 2004-2008 using gravity and surface elevation observations[J]. Journal of Glaciology, 2016, 62(235):888-904. [41] 陈雷. 基于卫星测高数据的南极典型区域冰盖质量变化研究[D]. 上海:同济大学, 2017. CHEN Lei. Mass balance of Antarctic ice sheet in typical areas based on altimetric data[D]. Shanghai:Tongji University, 2017. [42] 杜文佳. 卫星激光测高估计极地冰盖物质平衡关键技术研究[D]. 上海:同济大学, 2019. DU Wenjia. Research on key technologies of estimating mass balance of polar ice sheet based on satellite laser altimetry[D]. Shanghai:Tongji University, 2019. [43] 陈嘉晋. 粒雪层密实化模型及改正对南极质量平衡估算影响研究[D]. 上海:同济大学, 2020. CHEN Jiajin. The research of the Antarctic mass change evaluation caused by FIRN compaction modelling correction[D]. Shanghai:Tongji University, 2020. [44] ZWALLY H J, LI Jun, ROBBINS J W, et al. Mass gains of the Antarctic ice sheet exceed losses[J]. Journal of Glaciology, 2015, 61(230):1019-1036. [45] IVINS E R, JAMES T S, WAHR J, et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3126-3141. [46] RIGNOT E, BAMBER J L, VAN DEN BROEKE M R, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling[J]. Nature Geoscience, 2008, 1(2):106-110. [47] YE Wenkai, QIAO Gang, KONG Fansi, et al. Improved geometric modeling of 1960s KH-5 ARGON satellite images for regional Antarctica applications[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7):477-491. [48] GU Zhenxiong, FENG Tiantian, SCAIONI M, et al. Experimental results of elevation change analysis in the Antarctic ice sheet using DEMs from ERS and ICESat data[J]. Annals of Glaciology, 2014, 55(66):198-204. [49] WALKER C C, BECKER, M K, FRICKER H A. A high resolution, three-dimensional view of the D-28 calving event from Amery Ice Shelf with ICESat-2 and satellite imagery[J]. Geophysical Research Letters, 2021, 48(3):e2020GL091200. [50] JI Qing, LI Fei, PANG Xiaoping, et al. Statistical analysis of SSMIS sea ice concentration threshold at the Arctic sea ice edge during summer based on MODIS and ship-based observational data[J]. Sensors, 2018, 18(4):1109. [51] LIU Qingquan, JI Qing, PANG Xiaoping, et al. Inter-calibration of passive microwave satellite brightness temperatures observed by F13 SSM/I and F17 SSMIS for the retrieval of snow depth on arctic first-year sea ice[J]. Remote Sensing, 2017, 10(1):1-12. [52] PANG Xiaoping, GAO Xiang, JI Qing. Comparison of sea ice classification methods based on satellite scatterometer and radiometer data in the Weddell Sea, Antarctica[J]. Antarctic Science, 2019, 31(3):150-164. [53] LIU Xiaomin, FENG Tiantian, ZHAO Junqiao, et al. Super resolution reconstruction technique in passive microwave images of arctic sea ice[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama:IEEE, 2019:4234-4237. [54] ZHANG Qingchun, LI Fei, LEI Jintao, et al. Freeboard height and snow depth observed by floating GPS on land-fast sea ice in Nella Fjord, Antarctica[J]. Annals of Glaciology, 2020, 61(82):227-239. [55] XIAO Feng, LI Fei, ZHANG Shengkai, et al. Estimating arctic sea ice thickness with cryosat-2 altimetry data using the least squares adjustment method[J]. Sensors, 2020, 20(24):7011. [56] 李晓军, 刘雨芃, 汪宇. 城市地下空间数据标准化现状与发展趋势[J]. 地下空间与工程学报, 2017, 13(2):287-294. LI Xiaojun, LIU Yupeng, WANG Yu. Recent achievements and future trends for urban underground space data standardization[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(2):287-294. [57] KALIAMPAKOS D, BENARDOS A, MAVRIKOS A, et al. The underground atlas project[J]. Tunnelling and Underground Space Technology, 2016, 55:229-235. [58] 王建秀, 殷尧, 胡力绳. BIM及其在地下工程中的应用综述[J]. 现代隧道技术, 2017, 54(4):13-24. WANG Jianxiu, YIN Yao, HU Lisheng. Review of BIM and its application in underground engineering[J]. Modern Tunnelling Technology, 2017, 54(4):13-24. [59] 吴志强. 人工智能辅助城市规划[J]. 时代建筑, 2018(1):6-11. WU Zhiqiang. Artificial intelligence assisted urban planning[J]. Time Architecture, 2018(1):6-11. [60] ZHANG W Y, HAO T, CHANG Y, et al. Time-frequency analysis of enhanced GPR detection of RF tagged buried plastic pipes[J]. NDT & E International, 2017, 92:88-96. [61] HE Wenchao, HAO Tong, KE Hainan, et al. Joint time-frequency analysis of ground penetrating radar data based on variational mode decomposition[J]. Journal of Applied Geophysics, 2020, 181:104146. [62] 张禄禄, 臧晶晶. 主要极地国家的极地科技体制探究——以美国、俄罗斯和澳大利亚为例[J]. 极地研究, 2017, 29(1):133-141. ZHANG Lulu, ZANG Jingjing. Study of polar science and technology system of major polar countries-take the U. S., Russia and Australia as examples[J]. Chinese Journal of Polar Research, 2017, 29(1):133-141. [63] The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017[J]. Nature, 2018, 558(7709):219-222. [64] 于立伟, 王俊荣, 王树青, 等. 我国极地装备技术发展战略研究[J]. 中国工程科学, 2020, 22(6):84-93. YU Liwei, WANG Junrong, WANG Shuqing, et al. Development strategy for polar equipment in China[J]. Strategic Study of CAE, 2020, 22(6):84-93. [65] ROGERS C D F, HAO T, COSTELLO S B, et al. Condition assessment of the surface and buried infrastructure-a proposal for integration[J]. Tunnelling and Underground Space Technology, 2012, 28:202-211. [66] LIN Kaiqiang, HAO Tong. Experimental link quality analysis for LoRa-based wireless underground sensor networks[J]. IEEE Internet of Things Journal, 2021, 8(8):6565-6577. [67] LIN Kaiqiang, HAO Tong. Link quality analysis of wireless sensor networks for underground infrastructure monitoring:a non-backfilled scenario[J]. IEEE Sensors Journal, 2021, 21(5):7006-7014. [68] 罗侃, 诸云强, 程文芳, 等. 极地科学数据关联方法及应用研究[J]. 极地研究, 2016, 28(3):361-369. LUO Kan, ZHU Yunqiang, CHENG Wenfang, et al. A polar science linked data method and its research application[J]. Chinese Journal of Polar Research, 2016, 28(3):361-369. |