[1] 姚宜斌, 杨元喜, 孙和平, 等. 大地测量学科发展现状与趋势[J]. 测绘学报, 2020, 49(10):1243-1251. YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline:progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1243-1251. [2] 彭富清, 陈双军, 金群峰. 卫星测高误差对海洋重力场反演的影响[J]. 测绘学报, 2014, 43(4):337-340. PENG Fuqing, CHEN Shuangjun, JIN Qunfeng. Influence of altimetry errors on marine geopotential recovery[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):337-340. [3] 程鹏飞,文汉江,刘焕玲,等.卫星大地测量学的研究现状及发展趋势[J].武汉大学学报(信息科学版),2019,44(1):48-54. CHENG Pengfei, WEN Hanjiang, LIU Huanling, et al. Research situation and future development of satellite geodesy[J]. Geomatics and Information Science of Wuhan University, 2019,44(1):48-54. [4] 李建成,宁津生,陈俊勇,等.中国海域大地水准面和重力异常的确定[J].测绘学报,2003, 32(2):114-119. LI Jiancheng, NING Jinsheng, CHEN Junyong, et al. Geoid determination in China sea areas[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(2):114-119. [5] ZHU C C, GAO J Y, GAO J Y, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea:SCSGA V1.0[J]. Journal of Geodesy 2020, 94:50. [6] PRANDI P,PHILIPPS S, PIGNOT V. SARAL/AltiKa global statistical assessment and cross-calibration with Jason-2[J]. Marine Geodesy. 2015, 38(sup1):297-312. [7] ANDERSON O,KUNDSEN P. Global marine gravity field from the ERS-1 and geodetic mission altimetry[J]. Journal Geophysics Research, 1988, 103, 8129-8137. [8] WAN X Y, RICHARD F A,JIN S G, et al. Vertical deflections and gravity disturbances derived from HY-2A data[J]. Remote Sensing. 2020. 12(14):2287. [9] 许厚泽,王海瑛,陆洋,等.利用卫星测高数据推求中国近海及邻域大地水准面起伏和重力异常研究[J].地球物理学报,1999, (4):3-5. XU Houze, WANG Haiying, LU Yang, et al. Geoid undulations and gravity anomalies from T/P and ERS-1 altimeter data in the China Sea and vicinity[J]. Chinese Journal of Geophysics,1999, (4):3-5. [10] 张胜军,李建成,孔祥雪.基于Laplace方程的垂线偏差法反演全球海域重力异常[J].测绘学报,2020,49(4):452-460. ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from laplace equation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):452-460. [11] SANDWELL D T, MVLLER R D, SMITH W H. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205):65-7. [12] SANDWELL D, GARCIA E,SOOFI K, et al. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. Leading Edge, 2013, 32:892-899. [13] ANDERSEN O B, KNUDSEN P, BERRY P A M. The DNSC08GRA global marine gravity field from double retracked satellite altimetry[J]. Journal of Geodesy. 2010, 84:191-9. [14] HUANG C, KAO E C, PARSONS B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/Poseidon altimeter data[J]. Geophysical Journal International. 2015, 134:449-459. [15] GOPALAPILLAI G S. Non-global recovery of gravity anomalies from a combination of terrestrial and satellite altimetry data[D]. Ohio:Ohio State University, 1974. [16] 邢志斌, 李姗姗. 我国陆海统一似大地水准面构建的三维重力矢量法[J]. 测绘学报, 2018, 47(5):575-583. XING Zhibin, LI Shanshan. The 3D gravity vectors method in China land and ocean quasi-geoid determination[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):575-583. [17] SANDWELL D T, SMITH W H. Marine gravity anomalies from satellite from Geosat and ERS-1 satellite altimetry[J]. Journal of Geophysical Research. 1997, 102(B5):10039-10054. [18] 边少锋. 大地测量边值问题数值解法与地球重力场逼近[D]. 武汉:武汉测绘科技大学, 1992. BIAN Shaofeng. Numerical solution for geodetic boundary value problem and the Earth's gravity field approximation[D]. Wuhan:Wuhan Technical University of Surveying and Mapping, 1992. [19] BIAN S F. Some cubature formula for singular integrals in physical geodesy[J]. Journal of Geodesy. 1997, 71:443-45. [20] HWANG C. Inverse Vening-Meinesz formula and deflection-geoid formula:applications to the predictions of gravity and geoid over the South China Sea[J]. Journal of Geodesy. 1988, 72:304-312. [21] HWANG C, HSU H Y, JANG R J. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry:applications of deflection-geoid and inverse Vening-Meinesz formula[J]. Journal of Geodesy, 2002, 76:407-418. [22] 常晓涛,李建成,章传银,等.测高重力内区效应的推导与计算[J].地球物理学报,2005, (6):89-94. CHANG Xiaotao, LI Jiancheng, ZHANG Chuanyin, et al. Deduction and estimation of innermost zone effects in altimetry gravity algorithm[J].Chinese Journal of Geophysics, 2005, (6):89-94. [23] 王瑞,李厚朴.基于逆Stokes公式的测高重力反演中央区效应计算[J].武汉大学学报(信息科学版),2010,35(4):467-471. WANG Rui, LI Houpu. Calculation of innermost area effect in altimetry gravity recovery based on the inverse Stokes formula[J]. Geomatics and Information Science of Wuhan University, 2010,35(4):467-471. [24] BIAN S F, LI H P. Mathematical analysis of some typical problems in geodesy by means of computer algebra[M]. London, United Kingdom:[s.n.], 2019:67-87. [25] HWANG C. Inverse Vening-Meinesz formula and deflection-geoid formula:applications to the predictions of gravity and geoid over the South China Sea[J]. Journal of Geodesy, 1988, 72:304-31. [26] 李厚朴,边少锋,纪兵,等.基于逆Vening-Meinesz公式的测高重力中央区效应精密计算[J].武汉大学学报(信息科学版),2019,44(2):200-205. LI Houpu, BIAN Shaofeng, JI Bing, et al. Precise calculation of innermost area effects in altimetry gravity based on the inverse Vening-Meinesz formula[J]. Geomatics and Information Science of Wuhan University, 2019,44(2):200-205. |