[1] LEE P M, JUN B H, LIM Y K. Review on underwater navigation system based on range measurements from one reference[C]//Proceedings of OCEANS 2008-MTS/IEEE Kobe Techno-Ocean. Kobe, Japan:IEEE, 2008:1-5. [2] PAULL L, HUANG G, SETO M, et al. Communication-constrained multi-AUV cooperative SLAM[C]//Proceedings of 2015 IEEE international conference on robotics and automation (ICRA). Seattle, WA, USA:IEEE, 2015:509-516. [3] YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):16-24. [4] WANG J, XU T, ZHANG B, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2020(7):1-16. [5] KALWA J, PASCOAL A, PERRIER M, et al. Coordination and control of cooperating heterogeneous unmanned systems in uncertain environments[J]. Annex 1, EC Project IST, 2006:35223. [6] SCHOFIELD O, CHANT R, KOHUT J, et al. The growth of the New Jersey shelf observing system for monitoring plumes and blooms on the mid-atlantic continental shelf[C]//Proceedings of Oceans'04 MTS/IEEE Techno-Ocean'04(IEEE Cat. No. 04CH37600). Kobe, Japan::IEEE, 2004(1):127-132. [7] 翟国君, 莫谟涛. 海洋测绘的现状与发展[J]. 测绘通报, 2001(6):7-9. ZHAI Guojun, HUANG Motao, OUYANG Yongzhong, et al. The present and future of hydrographic surveying and charting[J]. Bulletin of Surveying and Mapping, 2001(6):7-9. [8] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1):1-8. DOI:10.11947/j.AGCS/2017.20160519. YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):1-8. DOI:10.11947/j.AGCS/2017.20160519. [9] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS/2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS/2017.20170276. [10] TAN Y T, GAO R, CHITRE M. Cooperative path planning for range-only localization using a single moving beacon[J]. IEEE Journal of Oceanic Engineering, 2014, 39(2):371-385. [11] HUANG Y, ZHANG Y, XU B, et al. A new adaptive extended Kalman filter for cooperative localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54(1):353-368. [12] VAGANAY J, LEONARD J J, CURCIO J A, et al. Experimental validation of the moving long base-line navigation concept[C]//Proceedings of 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No. 04CH37578). Sebasco, ME, USA:IEEE, 2004:59-65. [13] BAHR A, LEONARD J J, FALLON M F. Cooperative localization for autonomous underwater vehicles[J]. The International Journal of Robotics Research, 2009, 28(6):714-728. [14] LIU M, SHEN J, ZHANG J, et al. A cooperative localization method of UUV based on unscented Kalman filter[J]. Torpedo Technology, 2011, 19(3):205-208. [15] DONG P, CHENG J, LIU L, et al. INS/USBL nonlinear integrated navigation method based on relative information observation[J]. Systems Engineering and Electronic Technology, 2019, 41:402-408. [16] LI Q, NAQVI S M, NEASHAM J, et al. Robust cooperative navigation for AUVs using the student's T distribution[C]//Proceedings of 2017 Sensor Signal Processing for Defence Conference (SSPD). Looidon, UK:IEEE, 2017:1-5. [17] 杨元喜. 自适应动态导航定位[M]. 北京:测绘出版社, 2006. YANG Yuanxi. Adaptive dynamic navigation and positioning[M]. Beijing:Surveying and Mapping Press, 2006. [18] 高为广, 杨元喜, 张双成. 基于当前加速度模型的抗差自适应Kalman滤波[J].测绘学报,2006, 35(1):15-18. GAO Weiguang, YANG Yuanxi, ZHANG Shuangcheng. Adaptive robust Kalman filtering based on the current statistical model[J]. Acta Geodaetica et Cartographica Sinica,2006, 35(1):15-18. [19] SUN C, ZHANG Y, WANG G, et al. A maximum correntropy divided difference filter for cooperative localization[J]. IEEE Access, 2018(6):41720-41727. [20] HARRIS Z J, WHITCOMB L L. Preliminary evaluation of cooperative navigation of underwater vehicles without a DVL utilizing a dynamic process model[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia:IEEE, 2018:4897-4904. [21] 尹潇, 柴洪洲, 向民志, 等. 附加运动学约束的BDS抗差UKF导航算法[J]. 测绘学报, 2020, 49(11):1399-1406. YIN Xiao, CHAI Hongzhou, XIANG Minzhi, et al. Robust UKF algorithm with motion constraint in BDS navigation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1399-1406. [22] ZHAO S, WANG Z, HE K, et al. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle[J]. Applied Ocean Research, 2018, 77:69-77. [23] WANG Z, ZHAO S, JI S, et al. Real-time stochastic model for precise underwater positioning[J]. Applied Acoustics, 2019(150):36-43. [24] XU B, RAZZAQI A A, YALONG L. Cooperative localisation of AUVs based on huber-based robust algorithm and adaptive noise estimation[J]. The Journal of Navigation, 2019, 72(4):875-893. [25] MU H, BAILEY T, THOMPSON P, et al. Decentralised solutions to the cooperative multi-platform navigation problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1433-1449. |