[1] 黄露. 基于机器学习的汶川震区滑坡灾害气象预警模型研究[J]. 测绘学报, 2020, 49(2):267.DOI:10.11947/j.AGCS.2020.20190061. HUANG Lu. Research on meteorological early-warning model of landslides in Wenchuan earthquake area based on machine learning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2):267.DOI:10.11947/j.AGCS.2020.20190061. [2] DONG Laigen, SHAN Jie. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84:85-99. [3] 陶和平, 刘斌涛, 刘淑珍, 等. 遥感在重大自然灾害监测中的应用前景:以5·12汶川地震为例[J]. 山地学报, 2008, 26(3):276-279. TAO Heping, LIU Bintao, LIU Shuzhen, et al. Natural hazards monitoring using remote sensing-a case study of 5·12 Wenchuan earthquake[J]. Journal of Mountain Science, 2008, 26(3):276-279. [4] 眭海刚, 刘超贤, 黄立洪, 等. 遥感技术在震后建筑物损毁检测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(7):1008-1019. SUI Haigang, LIU Chaoxian, HUANG Lihong, et al. Application of remote sensing technology in earthquake-induced building damage detection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1008-1019. [5] YAMAZAKI F, SUZUKI D, MARUYAMA Y. Detection of damages due to earthquakes using digital aerial images[C]//Proceedings of the 6th International Workshop on Remote Sensing for Disaster Applications, Pavia, Italy:[s.n.],2008. [6] 谢嘉丽, 李永树, 李何超, 等. 利用灰度共生矩阵纹理特征识别空心村损毁建筑物的方法[J]. 测绘通报, 2017(12):90-93, 102. XIE Jiali, LI Yongshu, LI Hechao, et al. Recognition of damage buildings in hollow village based on texture feature of gray level co-occurrence matrix[J]. Bulletin of Surveying and Mapping, 2017(12):90-93, 102. [7] 何浩, 刘修国, 沈永林. 基于视差的高分辨率遥感影像建筑物变化检测[J]. 遥感技术与应用, 2019, 34(6):1315-1323. HE Hao, LIU Xiuguo, SHEN Yonglin. Building change detection method considering the parallax for high resolution remote sensing image[J]. Remote Sensing Technology and Application, 2019, 34(6):1315-1323. [8] 刘莹, 陶超, 闫培, 等. 图割能量驱动的高分辨率遥感影像震害损毁建筑物检测[J]. 测绘学报, 2017, 46(7):910-917.DOI::10.11947/j.AGCS.2017.20170035. LIU Ying, TAO Chao, YAN Pei, et al. Graph cut energy driven earthquake-damaged building detection from high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):910-917.DOI::10.11947/j.AGCS.2017.20170035. [9] 刘莹, 李强. 融合多特征的高分辨率遥感影像震害损毁建筑物检测[J]. 测绘与空间地理信息, 2018, 41(6):61-64. LIU Ying, LI Qiang. Damaged building detection from high resolution remote sensing images by integrating multiple features[J]. Geomatics & Spatial Information Technology, 2018, 41(6):61-64. [10] 李强, 张景发. 不同特征融合的震后损毁建筑物识别研究[J]. 地震研究, 2016,39(3):486-493, 527. LI Qiang, ZHANG Jingfa. Research on earthquake damaged building extraction by different features fusion[J]. Journal of Seismological Research, 2016, 39(3):486-493, 527. [11] SONOBE M. Characteristics of texture index of damaged buildings using time-series high-resolution optical satellite images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43:1709-1714. [12] 袁玉, 申旭辉, 薛腾飞, 等. SAR图像变化检测提取建筑物震害信息的研究综述[J]. 地壳构造与地壳应力文集, 2017(1):131-143. YUAN Yu, SHEN Xuhui, XUE Tengfei, et al. Review of researching for building earthquake damage information extraction based on SAR images change detection[J]. Bulletin of theInstituteof Crustal Dynamics, 2017(1):131-143. [13] 许志华. 基于低空影像和地面LiDAR数据的建筑物损毁评估方法研究[J]. 地理与地理信息科学, 2018, 34(4):126. XU Zhihua. Building damage assessment from unmanned aerial vehicle images and terrestrial LiDAR data[J]. Geography and Geo-Information Science, 2018, 34(4):126. [14] SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster RegionBasedconvolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):18-28. [15] 叶昕, 王俊, 秦其明. 基于高分一号卫星遥感图像的建筑物震害损毁检测研究:以2015年尼泊尔MS8.1地震为例[J]. 地震学报, 2016,38(3):477-485, 509. YE Xin, WANG Jun, QIN Qiming. Damaged building detection based on GF-1 satellite remote sensing image:a case study for Nepal MS8.1 earthquake[J]. Acta Seismologica Sinica, 2016,38(3):477-485, 509. [16] SAITO K, SPENCE R J S, GOING C, et al. Using high-resolution satellite images for post-earthquake building damage assessment:a study following the 26 January 2001 gujarat earthquake[J]. Earthquake Spectra, 2004, 20(1):145-169. [17] LIU Sicong, DU Qian, TONG Xiaohua, et al. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4124-4137. [18] NEETI N, EASTMAN J R. Novel approaches in extended principal component analysis to compare spatio-temporal patterns among multiple image time series[J]. Remote Sensing of Environment, 2014, 148:84-96. [19] 马国锐, 吴娇, 姚聪. 多尺度特征融合的建筑物及损毁语义分割[J]. 测绘工程, 2020, 29(4):1-6. MA Guorui, WU Jiao, YAO Cong. Semantic segmentation of building and damage based on multi-scale feature fusion[J]. Engineering of Surveying and Mapping, 2020, 29(4):1-6. [20] MIURA H, ARIDOME T, MATSUOKA M. Deep learning-based identification of collapsed, non-collapsed and blue tarp-covered buildings from post-disaster aerial images[J]. Remote Sensing, 2020, 12(12):1924. [21] 左宗成, 张文, 张东映. 融合可变形卷积与条件随机场的遥感影像语义分割方法[J]. 测绘学报,2019,48(6):718-726. DOI:10.11947/j.AGCS.2019.20170740. ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):718-726. DOI:10.11947/j.AGCS.2019.20170740. [22] DAI Yuchao,ZHANG Jing,HE Mingyi,et al.Salient object detection from multi-spectral remote sensing images with deep residual network[J].Journal of Geodesy and Geoinformation Science,2019,2(2):101-110. [23] 周阳, 张云生, 陈斯飏, 等. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2):44-50. ZHOU Yang, ZHANG Yunsheng, CHEN Siyang, et al. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2):44-50. [24] LI Yundong, YE Shi, BARTOLI I. Semisupervised classification of hurricane damage from postevent aerial imagery using deep learning[J]. Journal of Applied Remote Sensing, 2018, 12(4):045008. [25] HEZAVEH M M, KANAN C, SALVAGGIO C. Roof damage assessment using deep learning[C]//Proceedings of 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2017:6403-6408. [26] HEZAVEH M M, KANAN C, SALVAGGIO C. Roof damage assessment using deep learning[C]//Proceedings of 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). Washington, DC, USA:IEEE, 2017:6403-6408. [27] GONG Maoguo, NIU Xudong, ZHANG Puzhao, et al. Generative adversarial networks for change detection in multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2310-2314. [28] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2:565-571. [29] ZHAO Wenzhi, MOU Lichao, CHEN Jiage, et al. Incorporating metric learning and adversarial network for seasonal invariant change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2720-2731. [30] GUPTA R, GOODMAN B, PATEL N, et al. Creating xBD:a dataset for assessing building damage from satellite imagery[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, CA, USA:IEE,2019:10-17. [31] VICKERY P J, SKERLJ P F, LIN J, et al. HAZUS-MH hurricane model methodology. Ⅱ:damage and loss estimation[J]. Natural Hazards Review, 2006, 7(2):94-103. [32] KELMAN I. Physical flood vulnerability of residential properties in coastal, eastern England[D]. Cambridge,UK:University of Cambridge, 2003. [33] BERNARDINI A, GIOVINAZZI S, LAGOMARSINO S, et al. The vulnerability assessment of current buildings by a macroseismic approach derived from the EMS-98 scale[C]//Proceedings of the 3rd International Congress of Seismic Engineering.Girona, Spain:[s.n.],2007. |