[1] LIU Xiaoping, LIANG Xun, LI Xia, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116. [2] XIE Wenxuan, HUANG Qingxu, HE Chunyang, et al. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services:a case study in Beijing, China[J]. Ecological indicators, 2018, 84:183-193. [3] 袁艺, 史培军, 刘颖慧, 等. 土地利用变化对城市洪涝灾害的影响[J]. 自然灾害学报, 2003, 12(3):6-13. YUAN Yi, SHI Peijun, LIU Yinghui, et al. Impact of land use change on urban flood disaster[J]. Journal of Natural Disasters, 2003, 12(3):6-13. [4] GABRIEL Del BARRIO,GAO Zhihai, VALDERRAMA Jaime Martinez, et al. Comparing land degradation and regeneration trends in China Drylands[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):89-97. [5] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409. LIU Xiaojuan, LI Xia, LIANG Xun, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39(3):397-409. [6] 杜萌, 赵冬玲, 杨建宇, 等. 基于元胞自动机复合模型的土地利用演化模拟:以北京市海淀区为例[J]. 测绘学报, 2015, 44(S1):68-74. DU Meng, ZHAO Dongling, YANG Jianyu, et al. Simulation of land use change in Haidian district of Beijing city based on CA compound model[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1):68-74. [7] 王鹤, 曾永年. 城市扩展极限学习机模型[J]. 测绘学报, 2018, 47(12):1680-1690.DOI:10.11947/j.AGCS.2018.20170586. WANG He, ZENG Yongnian. Urban expansion model based on extreme learning machine[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1680-1690. DOI:10.11947/j.AGCS.2018.20170586. [8] DEKKERS J, KOOMEN E. Land-use simulation for water management[M]//Modelling land-use change. Springer, Dordrecht, 2007:355-374. [9] LIANG Xun, GUAN Qingfeng, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85:101569. [10] TOBLER W R. Cellular geography[M]//Philosophy in Geography.Dordrecht:Springer, 1979:379-386. [11] 黎夏, 叶嘉安, 刘小平, 等. 地理模拟系统:元胞自动机与多智能体[M]. 北京:科学出版社, 2007. LI Xia, YE Jiaan, LIU Xiaoping, et al. Geographical simulation systems:cellular automata and multi-agent system[M]. Beijing:Science Press, 2007. [12] WU Fulong. Calibration of stochastic cellular automata:the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 2002, 16(8):795-818. [13] ALMEIDA C M, GLERIANI J M, CASTEJON E F, et al. Using neural networks and cellular automata for modelling intra-urban land-use dynamics[J]. International Journal of Geographical Information Science, 2008, 22(9):943-963. [14] KAMUSOKO C, GAMBA J. Simulating urban growth using a random forest-cellular automata (RF-CA) model[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):447-470. [15] LI Xia, YANG Qingsheng, LIU Xiaoping. Discovering and evaluating urban signatures for simulating compact development using cellular automata[J]. Landscape and Urban Planning, 2008, 86(2):177-186. [16] FENG Yongjiu, LIU Yan. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing[J]. International Journal of Geographical Information Science, 2013, 27(3):449-466. [17] ZHAI Yaqian, YAO Yao, GUAN Qingfeng, et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata[J]. International Journal of Geographical Information Science, 2020, 34(7):1475-1499. [18] 谢志文, 王海军, 张彬, 等. 城市扩展元胞自动机多结构卷积神经网络模型[J]. 测绘学报, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020.20190147. XIE Zhiwen, WANG Haijun, ZHANG Bin, et al. Urban expansion cellular automata model based on multi-structures convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):375-385.DOI:10.11947/j.AGCS.2020.20190147. [19] 袁艺, 史培军, 刘颖慧, 等. 快速城市化过程中土地覆盖格局研究——以深圳市为例[J]. 生态学报, 2003, 23(9):1832-1840. YUAN Yi, SHI Peijun, LIU Yinghui, et al. A study on the pattern of land cover during rapid urbanization:Shenzhen city as a case study[J]. Acta Ecologica Sinica, 2003, 23(9):1832-1840. [20] 周春山, 叶昌东. 中国特大城市空间增长特征及其原因分析[J]. 地理学报, 2013, 68(6):728-738. ZHOU Chunshan, YE Changdong. Features and causes of urban spatial growth in Chinese metropolises[J]. Acta Geographica Sinica, 2013, 68(6):728-738. [21] 朱孟珏, 周春山. 从连续式到跳跃式:转型期我国城市新区空间增长模式[J]. 规划师, 2013, 29(7):79-84. ZHU Mengjue, ZHOU Chunshan. From contiguous to leaping expansion:spatial expansion transition of China's new districts[J]. Planners, 2013, 29(7):79-84. [22] 陈有川. 大城市规模急剧扩张的原因分析与对策研究[J]. 城市规划, 2003, 27(4):33-36, 94. CHEN Youchuan. Study on the reasons and policies towards the rapid expansion of largecities[J]. City Planning Review, 2003, 27(4):33-36, 94. [23] 何青松, 谭荣辉, 杨俊. 基于近邻传播聚类元胞自动机模型的武汉城市扩散和聚合过程同步模拟[J]. 地理学报, 2021, 76(10):2522-2535. HE Qingsong, TAN Ronghui, YANG Jun. Synchronized simulation of urban diffusional and aggregational process based on the affinity propagation cellular automata:a case study of Wuhan city[J]. Acta Geographica Sinica, 2021, 76(10):2522-2535. [24] 何凡能, 李美娇, 杨帆. 近70年来中国历史时期土地利用/覆被变化研究的主要进展[J]. 中国历史地理论丛, 2019, 34(4):5-16. HE Fanneng, LI Meijiao, YANG Fan. Main progress in historical land use and land cover change in China during the past 70 years[J]. Journal of Chinese Historical Geography, 2019, 34(4):5-16. [25] LIANG Xun, LIU Xiaoping, CHEN Guangliang, et al. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones[J]. International Journal of Geographical Information Science, 2020, 34(10):1930-1952. [26] JIANG Weiguo, CHEN Zheng, LEI Xuan, et al. Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model[J]. Journal of Geographical Sciences, 2015, 25(7):836-850. [27] WANG Youquan, CAO Jie, TAO Haicheng. Graph convolutional network with multi-similarity attribute matrices fusion for node classification[J]. Neural Computing and Applications, 2021:1-11. [28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [29] THOMAS N KIPF, MAX WELLING. Semi-supervised classification with graph convolutional net-works[C]//Proceedings of 2017 International Conference on Learning Representations (ICLR). Toulon:[s.n.],2017:02907. [30] 冯永玖, 韩震. 元胞邻域对空间直观模拟结果的影响[J]. 地理研究, 2011, 30(6):1055-1065. FENG Yongjiu, HAN Zhen. Impact of neighbor configurations on spatially-explicit modeling results[J]. Geographical Research, 2011, 30(6):1055-1065. [31] 季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020, 45(2):233-241. JI Shunping, TIAN Siqi, ZHANG Chi. Urban land cover classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2):233-241. [32] SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):18-28. [33] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15. [34] ZHU Axing, LU Guonian, LIU Jing, et al. Spatial prediction based on Third Law of Geography[J]. Annals of GIS, 2018, 24(4):225-240. [35] 陈逸敏, 黎夏. 机器学习在城市空间演化模拟中的应用与新趋势[J]. 武汉大学学报(信息科学版), 2020, 45(12):1884-1889. CHEN Yimin, LI Xia. Applications and new trends of machine learning in urban simulation research[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1884-1889. [36] SCHALDACH R, ALCAMO J, KOCH J, et al. An integrated approach to modelling land-use change on continental and global scales[J]. Environmental Modelling & Software, 2011, 26(8):1041-1051. [37] VERBURG P H, SOEPBOER W, VELDKAMP A, et al. Modeling the spatial dynamics of regional land use:the CLUE-S model[J]. Environmental Management, 2002, 30(3):391-405. [38] FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734):570-574. [39] LIU Dandan, CHEN Nengcheng. Satellite monitoring of urban land change in the middle Yangtze River Basin urban agglomeration, China between 2000 and 2016[J]. Remote Sensing, 2017, 9(11):1086. [40] 钱志友, 符海月, 王妍, 等. 2004-2016年南京市城市扩张及形态演变特征[J]. 国土资源遥感, 2019, 31(2):149-156. QIAN Zhiyou, FU Haiyue, WANG Yan, et al. Characteristics of urban expansion and morphological evolution in Nanjing from 2004 to 2016[J]. Remote Sensing for Land & Resources, 2019, 31(2):149-156. [41] 江西省人民政府. 第12次省政府常务会议新闻稿[EB/OL]. http://www.jiangxi.gov.cn/art/2013/10/8/art_5848_208741.html, 2013-10-08. People's Government of Jiangxi Province. Press release of the 12th provincial government executive meeting[EB/OL]. http://www.jiangxi.gov.cn/art/2013/10/8/art_5848_208741.html, 2013-10-08. [42] TACHIKAWA T, KAKU M, IWASAKI A, et al. ASTER global digital elevation model version 2-summary of validation results[R].USA:NASA, 2011. [43] 徐新良.中国人口空间分布公里网格数据集[DB].资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121101. XU Xinliang. China Population distribution kilometer gridded data set[DB]. Data Registration and Publishing System of Resource and Environment Science and Data Center, China Academy of Science(http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121101. [44] 徐新良.中国GDP空间分布公里网格数据集[DB].中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121102. XU Xinliang. China GDP distribution kilometer gridded data set[DB]. Data Registration and Publishing System of Resource and Environment Science and Data Center, China Academy of Science(http://www.resdc.cn/DOI), 2017. DOI:10.12078/2017121102. [45] Geofabrik. Openstreetmap data downloads[DB/OL].[2021-01-28]. http://download.geofabrik.de/. [46] KARIMI F, SULTANA S, BABAKAN A S, et al. An enhanced support vector machine model for urban expansion prediction[J]. Computers, Environment and Urban Systems, 2019, 75:61-75. |