[1] 李道纪, 郭海涛, 卢俊, 等. 遥感影像地物分类多注意力融和U型网络法[J]. 测绘学报, 2020,49(8):1051-1064. DOI: 10.11947/j.AGCS.2020.20190407. LI Daoji, GUO Haitao, LU Jun,et al. A remote sensing image classfication procedure based on multilevel attention fusion U-Net[J].Acta Geodaetica et Cartographica Sinica, 2020,49(8):1051-1064. DOI: 10.11947/j.AGCS.2020.20190407. [2] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [3] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [4] KAMPFFMEYER M, SALBERG A B, JENSSEN R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Las Vegas:IEEE,2016: 680-688. [5] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]: Springer,2015. [6] PAN Xuran, YANG Fan, GAO Lianru, et al. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms[J]. Remote Sensing, 2019,11(8):917. [7] 张玉鑫, 颜青松, 邓非. 高分辨率遥感影像建筑物提取多路径RSU网络法[J]. 测绘学报,2022,51(1):135-144. DOI:10.11947/j.AGCS.2021.20200508. ZAHNG Yuxin,YAN Qingsong,DENG Fei.Multi-path RSU network method for high-resolution remote sensing image building extraction[J]. Acta Geodaetica et Cartographica Sinica,2022,51(1):135-144.DOI:10.11947/j.AGCS.2021.20200508. [8] HE Hao, WANG Wang, WANG Wang, et al.A road extraction method for remote sensing image based on encoder-de-coder network[J]. Journal of Geodesy and Geoinformation Science,2020,3(2): 415-426. [9] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. [10] MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention: advances in neural information processing systems[EB/OL]. [2022-11-20].https://arxiv.org/abs/1406.6247. [11] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018: 7132-7141. [12] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'squeeze & excitation’ in fully convolutional networks[C]//Proceedings of 2018 Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 421-429. [13] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net: learning where to look for the pancreas[EB/OL]. [2022-11-24]. https://arxiv.org/abs/1804.03999. [14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [15] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017: 6230-6239. [16] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2022-12-04].https://arxiv.org/abs/1511.07122. [17] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York: ACM, 2015: 448-456. [18] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].[2023-01-04]. https://arxiv.org/abs/1412.7062. [19] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [20] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2023-03-24]. https://arxiv.org/abs/1706.05587. [21] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 15th European Conference of Computer Vision.Munich:ACM, 2018: 833-851. [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J].Computer Science, 2014,10(1409):1556. [23] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[C]//Proceedings of 2015 International Conference on Learning Representations. San Diego:ICLR,2015. [24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE, 2017: 2999-3007. [25] SHAO Zhenfeng, YANG Ke, ZHOU Weixun. Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset[J]. Remote Sensing, 2018, 10(6): 964. [26] SHAO Zhenfeng, ZHOU Weixun, DENG Xueqing, et al. Multilabel remote sensing image retrieval based on fully convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 318-328. [27] BOGUSZEWSKI A, BATORSKI D, ZIEMBA-JANKOWSKA N, et al. LandCover.ai: dataset for automatic mapping of buildings, woodlands and water from aerial imagery[J].Journal of the Indian Society of Remote Sensing,2018, 46:2057-2068. [28] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017: 1800-1807. |