[1] XU Yan, OUYANG Xi, CHENG Yu, et al. Dual-mode vehicle motion pattern learning for high performance road traffic anomaly detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake: IEEE, 2018: 145-1457. [2] TANEJA A, BALLAN L, POLLEFEYS M. Image based detection of geometric changes in urban environments[C]//Proceedings of 2011 International Conference on Computer Vision.Barcelona:IEEE, 2012: 2336-2343. [3] BRUZZONE L, COSSU R, VERNAZZA G. Detection of land-cover transitions by combining multidate classifiers[J]. Pattern Recognition Letters, 2004, 25(13): 1491-1500. [4] 张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7): 1398-1415. DOI: 10.11947/j.AGCS.2022.20220279. ZHANG Bing, YANG Xiaomei, GAO Lianru, et al. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1398-1415. DOI: 10.11947/j.AGCS.2022.20220279. [5] 季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020, 45(2): 233-241. JI Shunping, TIAN Siqi, ZHANG Chi. Urban land cover classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241. [6] STENT S, GHERARDI R, STENGER B, et al. Precise deterministic change detection for smooth surfaces[C]//Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision.Lake Placid:IEEE, 2016: 1-9. [7] SHEN Fangyu, WANG Yanfei, LIU Chang. Synthetic aperture radar image change detection based on Kalman filter and nonlocal means filter in the nonsubsampled shearlet transform domain[J]. Journal of Applied Remote Sensing, 2020, 14(1): 016517. [8] LUPPINO L T, ANFINSEN S N, MOSER G, et al. A clustering approach to heterogeneous change detection[C]// Proceedings of 2017 Scandinavian Conference on Image Analysis. Cham: Springer, 2017: 181-192. [9] WANG Haibo, QI Jianchao, LEI Yufei, et al. A refined method of high-resolution remote sensing change detection based on machine learning for newly constructed building areas[J]. Remote Sensing, 2021, 13(8): 1507. [10] ZHANG Yun. Smart photogrammetric and remote sensing image processing for very high resolution optical images—examples from the CRC-AGIP lab at UNB[J]. The Journal of Geodesy and Geoinformation Science, 2019, 2(2): 17-26. [11] 张伟良, 刘琦, 吴长彬, 等. 基于孪生神经网络的土地利用现状年度变化检测[J]. 测绘通报, 2021(3): 91-95, 104. ZHANG Weiliang, LIU Qi, WU Changbin, et al. Annual change detection of land use status based on siamese neural network[J]. Bulletin of Surveying and Mapping, 2021(3): 91-95, 104. [12] 刘国强, 房胜, 李哲. 用于遥感图像变化检测的全尺度特征聚合网络[J]. 北京航空航天大学学报, 2022, 48(8): 1464-1470. LIU Guoqiang, FANG Sheng, LI Zhe. A full-scale feature aggregation network for remote sensing image change detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1464-1470. [13] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of 2016 IEEE Transactions on Pattern Analysis and Machine Intelligence. Seoul:IEEE, 2016: 640-651. [14] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [15] CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional siamese networks for change detection[C]// Proceedings of 2018 IEEE International Conference on Image Processing. Athens:IEEE, 2018: 4063-4067. [16] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016: 770-778. [18] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE, 2021: 13708-13717. [19] ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. [20] CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. [21] SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. [22] 梁哲恒, 黎宵, 邓鹏, 等. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. DOI: 10.11947/j.AGCS.2022.20200540. LIANG Zheheng, LI Xiao, DENG Peng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. DOI: 10.11947/j.AGCS.2022.20200540. [23] HUANG Rui, WANG Ruofei, ZHANG Yuxiang, et al. Selecting change image for efficient change detection[J]. IET Signal Processing, 2022, 16(3): 327-339. [24] DING Jigang, LI Xiaorun, ZHAO Liaoying. CDFormer: a hyperspectral image change detection method based on transformer encoders[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [25] MAO Zan, TONG Xinyu, LUO Ze, et al. MFATNet: multi-scale feature aggregation via transformer for remote sensing image change detection[J]. Remote Sensing, 2022, 14(21): 5379. [26] YANG Bingjie, HUANG Yuancheng, SU Xin, et al. MAEANet: multiscale attention and edge-aware siamese network for building change detection in high-resolution remote sensing images[J]. Remote Sensing, 2022, 14(19): 4895. [27] GUO Chaoxu, FAN Bin, ZHANG Qian, et al. AugFPN: improving multi-scale feature learning for object detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12595-12604. [28] LI Zun, LANG Congyan, LIEW J H, et al. Cross-layer feature pyramid network for salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 4587-4598. [29] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017: 2117-2125. [30] 叶沅鑫, 孙苗苗, 周亮, 等. 面向建筑物变化检测的主体边缘分解与重组神经网络[J]. 测绘学报, 2023, 52(1): 71-81. DOI: 10.11947/j.AGCS.2023.20210350. YE Yuanxin, SUN Miaomiao, ZHOU Liang, et al. Main body, edge decomposition and reorganization network for building change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 71-81. DOI: 10.11947/j.AGCS.2023.20210350. [31] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. [32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL].[2022-05-23].https://arxiv.org/abs/1706.03762. [33] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42(2): 565-571. [34] ALCANTARILLA P F, STENT S, ROS G, et al. Street-view change detection with deconvolutional networks[J]. Autonomous Robots, 2018, 42(7): 1301-1322. |