[1] ZINGERLE P, PAIL R, GRUBER T, et al. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 2020, 94(7):66. [2] XU Chuang, LI Jinbo, JIAN Guangyu, et al. An adaptive nonlinear iterative method for predicting seafloor topography from altimetry-derived gravity data[J]. Journal of Geophysical Research:Solid Earth, 2023, 128(1):e2022JB025692. [3] HWANG C, CHANG E T Y. Seafloor secretsr evealed[J]. Science, 2014, 346:32-33. [4] 李晓平, 周贤高, 宫京. 重力匹配导航要素影响机理建模与试验验证[J]. 中国惯性技术学报, 2021, 29(6):777-781, 787. LI Xiaoping, ZHOU Xiangao, GONG Jing. Factor influencing mechanism modeling and test validation of gravity map matching navigation[J]. Journal of Chinese Inertial Technology, 2021, 29(6):777-781, 787. [5] 李杨, 郭金运, 孙玉, 等. 联合时变重力数据与测高数据反演全球海平面变化及其分量贡献[J]. 测绘学报, 2022, 51(8):1768-1778. DOI:10.11947/j.AGCS.2022.20210169. LI Yang, GUO Jinyun, SUN Yu, et al. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8):1768-1778. DOI:10.11947/j.AGCS.2022.20210169. [6] GREEN C M, FLETCHER K M U, CHEYNEY S, et al. Satellite gravity-enhancements from new satellites and new altimeter technology[J]. Geophysical Prospecting, 2019, 67(6):1611-1619. [7] SANDWELL D T, MULLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205):65-67. [8] SCHWABE J, SCHEINERT M. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data[J]. Journal of Geodesy, 2014, 88(9):821-838. [9] ZHANG Shengjun, ABULAITIJIANG A, ANDERSEN O B, et al. Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes[J]. Journal of Geodesy, 2021, 95(6):66. [10] JIN Taoyong, ZHOU Mao, ZHANG Huan, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4):30. [11] 孙中苗, 管斌, 翟振和, 等. 海洋卫星测高及其反演全球海洋重力场和海底地形模型研究进展[J]. 测绘学报, 2022, 51(6):923-934. DOI:10.11947/j.AGCS.2022.20220069. SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, et al. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):923-934. DOI:10.11947/j.AGCS.2022.20220069. [12] ANDERSEN O B, KNUDSEN P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry[J]. Journal of Geophysical Research:Oceans, 1998, 103(C4):8129-8137. [13] 郭金运, 朱风顺, 刘新, 等. 基于卫星测高的孟加拉湾海洋时变重力研究[J]. 华中科技大学学报(自然科学版), 2023, 51(3):85-91, 99. GUO Jinyun, ZHU Fengshun, LIU Xin, et al. Time-varying marine gravity of Bay of Bengal derived from CryoSat-2 altimetry data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(3):85-91, 99. [14] FAN Diao, LI Shanshan, MENG Shuyu, et al. Bathymetric prediction from multi-source satellite altimetry gravity data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):49-58. [15] GUAN Bin, SUN Zhongmiao, LIU Xiaogang, et al. Feasibility analysis of performance validation for satellite altimeters using tide gauge and deep-ocean bottom pressure recorder[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):102-109. [16] LI Zhen, GUO Jinyun, JI Bing, et al. A review of marine gravity field recovery from satellite altimetry[J]. Remote Sensing, 2022, 14(19):4790. [17] ANDERSEN O B, KNUDSEN P. The DTU17 global marine gravity field:first validation results[C]//Proceedings of 2019 International Association of Geodesy Symposia. Cham:Springer International Publishing, 2019:83-87. [18] ZHU Chengcheng, GUO Jinyun, YUAN Jiajia, et al. SDUST2021GRA:global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data[J]. Earth System Science Data, 2022, 14(10):4589-4606. [19] ABDALLA S, KOLAHCHI A A, ABLAIN M, et al. Altimetry for the future:building on 25 years of progress[J]. Advances in Space Research, 2021, 68(2):319-363. [20] WAN Xiaoyun, HAO Ruijie, JIA Yongjun, et al. Global marine gravity anomalies from multi-satellite altimeter data[J]. Earth, Planets and Space, 2022, 74(1):165. [21] 孙和平, 孙文科, 申文斌, 等. 地球重力场及其地学应用研究进展:2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5):445-460. SUN Heping, SUN Wenke, SHEN Wenbin, et al. Research progress of earth's gravity field and its application in geosciences:a summary of annual meeting of Chinese Geoscience Union in 2020[J]. Advances in Earth Science, 2021, 36(5):445-460. [22] YU Daocheng, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265:112650. [23] GUO Jinyun, LUO Hongxin, ZHU Chengcheng, et al. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data:a case study in the Gulf of Mexico[J]. Geophysical Journal International, 2022, 230(2):1267-1279. [24] WU Yihao, WANG Junjie, ABULAITIJIANG A, et al. Local enhancement of marine gravity field over the spratly islands by combining satellite SAR altimeter-derived gravity data[J]. Remote Sensing, 2022, 14(3):474. [25] PASSARO M, ROSE S K, ANDERSEN O B, et al. ALES+:adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters[J]. Remote Sensing of Environment, 2018, 211:456-471. [26] ABULAITIJIANG A, ANDERSEN O B, BARZAGHI R, et al. Coastal marine gravity modelling from satellite altimetry-case study in the Mediterranean[J]. Journal of Geodetic Science, 2021, 11(1):29-37. [27] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land Elevation Satellite-2(ICESat-2):science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273. [28] BUZZANGA B, HEIJKOOP E, HAMLINGTON B D, et al. An assessment of regional ICESat-2 sea-level trends[J]. Geophysical Research Letters, 2021, 48(9):e92327. [29] YU Yao, SANDWELL D T, GILLE S T, et al. Assessment of ICESat-2 for the recovery of ocean topography[J]. Geophysical Journal International, 2021, 226(1):456-467. [30] CHE Defu, LI Hang, ZHANG Shengjun, et al. Calculation of deflection of vertical and gravity anomalies over the South China Sea derived from ICESat-2 data[J]. Frontiers in Earth Science, 2021, 9:379. [31] LIU Xin, HUI Guihua, GUO Jinyun, et al. Inversion of deflection of the vertical in the South China Sea using ICESat-2 sea surface height data[J]. Remote Sensing, 2022, 15(1):30. [32] MORISON J H, HANCOCK D, DICKINSON J, et al. ATLAS/ICESat-2 L3A ocean surface height, Version 5. [EB/OL]. [2022-11-12]. https://doi.org/10.5067/ATLAS/ATL12.005. [33] ZHU Chengcheng, GUO Jinyun, GAO Jinyao, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea:SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5):50. [34] 郭金运,张鸿飞,李真,等.基于多源船载重力异常数据的联合再处理——以墨西哥湾为例[J/OL]. 武汉大学学报(信息科学版), 1-23. [2022-11-12].https://doi.org/10.13203/j.whugis20230088. GUO Jinyun, ZHANG H, LI Z, et al. Joint reprocessing of shipborne gravity anomalies based on multi-sources:a case study of Gulf of Mexico[J/OL]. Geomatics and Information Science of Wuhan University, 1-23. [2022-11-12].https://doi.org/10.13203/j.whugis20230088. [35] SANDWELL D T, HARPER H, TOZER B, et al. Gravity field recovery from geodetic altimeter missions[J]. Advances in Space Research, 2021, 68(2):1059-1072. [36] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM 2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B4):B04406. [37] MULET S, RIO M H, ETIENNE H, et al. The new CNES-CLS18 global mean dynamic topography[J]. Ocean Science, 2021, 17(3):789-808. [38] HWANG C, HSU H Y, JANG R J. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry:applications of deflection-geoid and inverse Vening Meinesz formulae[J]. Journal of Geodesy, 2002, 76(8):407-418. |