Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1540-1551.doi: 10.11947/j.AGCS.2024.20230342
• Geodesy and Navigation • Previous Articles Next Articles
Jiaxi HUANG1(), Shaofeng BIAN1,2, Bing JI1()
Received:
2023-08-16
Published:
2024-09-25
Contact:
Bing JI
E-mail:hgarcia@163.com;hgarcia@163.com;jibing1978@126.com
About author:
HUANG Jiaxi (1990—), male, PhD candidate, majors in geophysical detection and navigation. E-mail: hgarcia@163.com
Supported by:
CLC Number:
Jiaxi HUANG, Shaofeng BIAN, Bing JI. Terrain corrections for airborne gravity gradiometry[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1540-1551.
Tab.1
Error evaluation of gravity gradient terrain correction for different elevation accuracies and grid sizes"
t | N | δTxx | δTxy | δTxz | δTzz |
---|---|---|---|---|---|
1 | 1000 | 57.12kδh/Hmin | 28.47kδh/Hmin | 55.81kδh/Hmin | 93.35kδh/Hmin |
1/2 | 2000 | 29.87kδh/Hmin | 17.21kδh/Hmin | 34.4kδh/Hmin | 48.78kδh/Hmin |
2/5 | 2500 | 24.29kδh/Hmin | 14.02kδh/Hmin | 28.04kδh/Hmin | 39.66kδh/Hmin |
1/3 | 3000 | 20.44kδh/Hmin | 11.8kδh/Hmin | 23.6kδh/Hmin | 33.37kδh/Hmin |
1/4 | 4000 | 15.48kδh/Hmin | 8.94kδh/Hmin | 17.87kδh/Hmin | 25.28kδh/Hmin |
1/5 | 5000 | 12.44kδh/Hmin | 7.18kδh/Hmin | 14.36kδh/Hmin | 20.31kδh/Hmin |
Tab.3
Error statistics of terrain correction when combined with different grid sizes"
高程精度/m | Kauring(内、中、外区半径:1.6、4、10 km) | Great Sand A(内、中、外区半径:2、6、15 km) | Great Sand B(内、中、外区半径:1.6、6、12 km) | ||||||
---|---|---|---|---|---|---|---|---|---|
min | max | RMS | min | max | RMS | min | max | RMS | |
0 | -1.08 | 0.60 | 0.33 | -2.78 | 1.19 | 0.18 | -1.19 | 1.75 | 0.22 |
0.25 | -1.40 | 1.36 | 0.37 | -2.81 | 1.14 | 0.21 | -2.52 | 2.38 | 0.46 |
0.50 | -2.44 | 2.23 | 0.48 | -2.82 | 1.90 | 0.29 | -4.47 | 4.95 | 0.84 |
Tab.4
Statics of calculation times at different GPU and CPU platforms"
研究区域 | 观测点数 | 平台1(CPU:i9-9900k@3.6 GHzGPU: NVIDIA TITAN V) | 平台2(CPU:i7-10750H@2.6 GHzGPU: NVIDIA GTX 1650Ti) | ||||
---|---|---|---|---|---|---|---|
CPU串行 | GPU并行 | 加速比 | CPU串行 | GPU并行 | 加速比 | ||
Kauring | 5000 | 650.6 s | 3.7 s | 175.8 | 757.0 s | 47.1 | 16.1 |
全部 | 约14 h | 4.3 min | — | 约16 h | 约1 h | — | |
Great Sand_A | 5000 | 963.2 s | 4.8 s | 200.1 | 1 406.0 s | 92.7 s | 15.2 |
全部 | 约15 h | 4.3 min | — | 约22 h | 约1.4 h | — | |
Great Sand_B | 5000 | 831.7 s | 4.7 s | 177 | 1 255.7 s | 80.1 s | 15.7 |
全部 | 约9 h | 2.9 min | — | 约14 h | 约0.9 h | — |
[1] | DRANSFIELD M H, CHEN Tianyou. Heli-borne gravity gradiometry in rugged terrain[J]. Geophysical Prospecting, 2019, 67(6): 1626-1636. |
[2] | DRANSFIELD M. Requirements for airborne gravity gradient terrain corrections[J]. ASEG Extended Abstracts, 2010, 2010(1): 1-4. |
[3] | FITZGERALD D, PATERSON R. Getting the best value from gravity gradiometry[J]. ASEG Extended Abstracts, 2013, 2013(1): 1-4. |
[4] | 张书航, 庞尹宁, 张吴明, 等. 航空重力梯度标定场无人机精细地形测量[J]. 华中科技大学学报(自然科学版), 2022, 50(9): 76-82. |
ZHANG Shuhang, PANG Yinning, ZHANG Wuming, et al. UAV high-precision topographic mapping of airborne gravity gradient test site[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9): 76-82. | |
[5] | EVSTIFEEV M I. The state of the art in the development of onboard gravity gradiometers[J]. Gyroscopy and Navigation, 2017, 8(1): 68-79. |
[6] | GRUJIC M. Data processing requirements for an 1 Eö/√Hz AGG system[J]. ASEG Extended Abstracts, 2012, 2012(1): 1-4. |
[7] | ARAVANIS T, GRUJIC M, PAINE J, et al. High precision terrain corrections for next generation airborne gravity data[J]. ASEG Extended Abstracts, 2015, 2015(1): 1-4. |
[8] | ANNECCHIONE M, HATCH D, HEFFORD S W. DEM sourcing guidelines for computing 1Eö accurate terrain corrections for airborne gravity gradiometry[J]. Journal of Applied Geophysics, 2017, 136: 335-342. |
[9] | HUANG O. Terrain corrections for gravity gradiometry[D]. Columbus: The Ohio State University, 2012. |
[10] | 边少锋, 李厚朴. 大地测量计算机代数分析[M]. 北京: 科学出版社, 2018. |
BIAN Shaofeng, LI Houpu. Computer algebra analysis on geodesy[M]. Beijing: Science Press, 2018. | |
[11] | KASS M A, LI Yaoguo. Efficient terrain correction in airborne and seaborne gravity gradiometry surveys[J]. ASEG Extended Abstracts, 2007, 2007(1): 1-4. |
[12] | KASS M A, LI Yaoguo. Practical aspects of terrain correction in airborne gravity gradiometry surveys[J]. Exploration Geophysics, 2008, 39(4): 198-203. |
[13] | JEKELI C. Extent and resolution requirements for the residual terrain effect in gravity gradiometry[J]. Geophysical Journal International, 2013, 195(1): 211-221. |
[14] | DRANSFIELD M, ZENG Yi. Airborne gravity gradiometry: terrain corrections and elevation error[J]. Geophysics, 2009, 74(5): 137-142. |
[15] | SIDERIS M G. A fast fourier transform method for computing terrain correction[J]. Manuscripta Geodaetica, 1985, 10: 66-73. |
[16] | FORSBERG R. Gravity field terrain effect computations by FFT[J]. Bulletin Géodésique, 1985, 59(4): 342-360. |
[17] | TZIAVOS I N, SIDERIS M G, FORSBERG R, et al. The effect of the terrain on airborne gravity and gradiometry[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B8): 9173-9186. |
[18] | PEDERSEN L B, BASTANI M, KAMM J. Gravity gradient and magnetic terrain effects for airborne applications—a practical fast Fourier transform technique[J]. GEOPHYSICS, 2015, 80(2): J19-J26. |
[19] | JEKELI C. A wavelet approach to the terrain correction in gravimetry and gravity gradiometry[J]. GEM-International Journal on Geomathematics, 2012, 3(1): 139-154. |
[20] | DAVIS K, KASS M A, LI Yaoguo. Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization[J]. Exploration Geophysics, 2011, 42(1): 88-97. |
[21] | LI Xiong, FOKS L. Gravity and gravity-gradient terrain corrections using an adaptive quadtree-based triangulation technique[C]//Proceedings of 2017 SEG Technical Program Expanded Abstracts. Houston: Society of Exploration Geophysicists, 2017. |
[22] | LI Yaoguo, KASS M A, MARTINEZ C, et al. Practical issues in the processing and inversion of airborne gravity gradiometry data[C]//Proceedings of 2011 International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. Beijing: Society of Exploration Geophysicists, 2011. |
[23] | MOORKAMP M, JEGEN M, ROBERTS A, et al. Massively parallel forward modeling of scalar and tensor gravimetry data[J]. Computers & Geosciences, 2010, 36(5): 680-686. |
[24] | 陈召曦, 孟小红, 郭良辉, 等. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12): 4069-4077. |
CHEN Zhaoxi, MENG Xiaohong, GUO Lianghui, et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12): 4069-4077. | |
[25] | 侯振隆. 重力全张量梯度数据的并行反演算法研究及应用[D]. 长春: 吉林大学, 2016. |
HOU Zhenlong. Research and application of parallel inversion algorithm for gravity full tensor gradient data[D]. Changchun: Jilin University, 2016. | |
[26] | 熊盛青. 航空地球物理综合探测理论技术方法装备应用[M]. 北京: 地质出版社, 2018. |
XIONG Shengqing. Application of theory, technology, method and equipment of aviation geophysical comprehensive detection[M]. Beijing: Geological Publishing House, 2018. | |
[27] | 黄炎, 王庆宾, 冯进凯, 等. 局部地形改正快速计算的GPU并行的棱柱法[J]. 测绘学报, 2020, 49(11): 1430-1437. DOI: 10.11947/j.AGCS.2020.20190403. |
HUANG Yan, WANG Qingbin, FENG Jinkai, et al. Rapid calcul ation of local topographic correction based on GPU parallel prism method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1430-1437. DOI: 10.11947/j.AGCS.2020.20190403. | |
[28] | NAGY D, PAPP G, BENEDEK J. The gravitational potential and its derivatives for the prism[J]. Journal of Geodesy, 2000, 74(7): 552-560. |
[29] | 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005. |
ZENG Hualin. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005. | |
[30] | LANE R. Kauring geophysical datasets, August 2010[DB]. Canberra: Geoscience Australia, 2010. |
[31] | DRENTH B, ABRAHAM J, GRAUCH V, et al. Digital data from the great sand dunes airborne gravity gradient survey, south-central Colorado[R]. [S.l.]: U.S. Geological Survey Open-File Report, 2013. |
[1] | XIAO Jia, TIAN Qin, HE Zongyi. Relative exponential entropy model on classification evaluation of geographic information data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1497-1505. |
[2] | ZHENG Maoteng, ZHOU Shunping, XIONG Xiaodong, ZHU Junfeng. GPU Parallel Bundle Block Adjustment [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1193-1201. |
[3] | ZHAO Yijiang, ZHOU Xiaoguang. Version Similarity-based Model for Volunteers' Reputation of Volunteered Geographic Information: A Case Study of Polygon [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5): 578-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||