[1] LUKATELA H. A Seamless Global Terrain Model in the Hipparchus System[EB/OL]. [2000-12-30]. http://www.geodyssey.com/global/papers. [2] 赵学胜, 侯妙乐, 白建军. 全球离散格网的空间数字建模[M]. 北京: 测绘出版社, 2007.ZHAO Xuesheng, HOU Miaole, BAI Jianjun. Spatial Digital Modeling of the Global Discrete Grids[M]. Beijing: Surveying and Mapping Press, 2007. [3] DUTTON G H.Lecture Notes in Earth Sciences:A Hierarchical Coordinate System for Geoprocessing and Cartography[M].Berlin: Springer-Verlag, 1999. [4] GOODCHILD M F,SHIREN Y.A Hierarchical Spatial Data Structure for Global Geographic Information Systems[J]. CVGIP:Graphical Models andImage Processing, 1992, 54(1): 31-44. [5] 白建军, 孙文彬, 赵学胜. 基于QTM的WGS-84椭球面层次剖分及其特点分析[J]. 测绘学报, 2011, 40(2): 243-248.BAI Jianjun, SUN Wenbin, ZHAO Xuesheng. Character Analysis and Hierarchical Partition of WGS-84 Ellipsoidal Facet Based on QTM[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 243-248. [6] 关丽, 程承旗, 吕雪锋. 基于球面剖分格网的矢量数据组织模型研究[J]. 地理与地理信息科学, 2009, 25(3): 23-27.GUAN Li, CHENG Chengqi, LV Xuefeng. Study on the Organization Model for Vector Data Based on Global Subdivision Grid[J]. Geography and Geo-Information Science, 2009, 25(3): 23-27. [7] 赵学胜, 白建军, 王志鹏. 基于QTM的全球地形自适应可视化模型[J]. 测绘学报, 2007, 36(3): 316-320.ZHAO Xuesheng, BAI Jianjun, WANG Zhipeng. An Adaptive Visualized Model of the Global Terrain Based on QTM[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 316-320. [8] SATOSHI I, FENG X. A Global Shallow Water Model Using High Order Multi-moment Constrained Finite Volume Method and Icosahedra Grid[J]. Journal of Computational Physics, 2010, 229(5): 1774-1796. [9] 邢华桥. 基于QTM的全球多分辨率水淹模拟[D]. 北京: 北京建筑工程大学, 2012.XING Huaqiao. Global Multi-resolution Submerging Simulation Based on QTM[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2012. [10] SEONG J C. Implementation of an Equal-area Gridding Method for Global-scale Image Archiving[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(5): 623-627. [11] LUGO J A, CLARKE K C. Implementation of Triangulated Quadtree Sequencing for a Global Relief Data Structure[C]//Proceedings, AUTO CARTO 12.Charlotte, NC:[s.n.],1995. [12] ROŞCA D, PLONKA G. An Area Preserving Projection from the Regular Octahedron to the Sphere[J]. Results in Mathematics, 2012, 62(3-4): 429-444. [13] SNYDER J P. An Equal-area Map Projection for Polyhedral Globes[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1992, 29(1): 10-21. [14] BJØRKE J T, GRYTTEN J K, HGER M, et al. A Global Grid Model Based on “Constant Area” Quadrilaterals[C]//ScanGIS.Horten: Norwegian Defence Research Establishment,2003, 3: 238-250. [15] BJØRKE J T, NILSEN S. Examination of a Constant-area Quadrilateral Grid in Representation of Global Digital Elevation Models[J]. International Journal of Geographical Information Science, 2004, 18(7): 653-664. [16] LEOPARDI P. A Partition of the Unit Sphere into Regions of Equal Area and Small Diameter[J]. Electronic Transactions on Numerical Analysis, 2006, 25(1): 309-327. [17] BECKERS B, BECKERS P. A General Rule for Disk and Hemisphere Partition into Equal-area Cells[J]. Computational Geometry, 2012, 45(7): 275-283. [18] ZHOU Mengyun, CHEN Jing, GONG Jianya. A Pole-oriented Discrete Global Grid System: Quaternary Quadrangle Mesh[J]. Computers & Geosciences, 2013, 61: 133-143. [19] TALBOT B G, TALBOT L M. Fast-earth: A Global Image Caching Architecture for Fast Access to Remote-sensing Data[C]//Proceedings of 2013 IEEE Aerospace Conference. Big Sky, MT: IEEE,2013: 1-10. [20] SAHR K, WHITE D, KIMERLING A J. Geodesic Discrete Global Grid Systems[J]. Cartography and Geographic Information Science, 2003, 30(2): 121-134. [21] SONG Lian,KIMERLINGA J,SAHR K. Developing an Equal Area Global Grid by Small Circle Subdivision[C]//GOODCHILD M, KIMERLING A J.Discrete Global Grids.Santa Barbara, CA:National Center for Geographic Information & Analysis, 2002. [22] HOLHOŞ A, ROŞCA D. An Octahedral Equal Area Partition of the Sphere and Near Optimal Configurations of Points[J].Computers & Mathematics with Applications, 2014, 67(5): 1092-1107. [23] 赵学胜, 孙文彬, 陈军. 基于QTM的全球离散格网变形分布及收敛分析[J]. 中国矿业大学学报, 2005, 34(4): 438-442.ZHAO Xuesheng, SUN Wenbin, CHEN Jun. Distortion Distribution and Convergent Analysis of the Global Discrete Grid Based on QTM[J]. Journal of China University of Mining & Technology, 2005, 34(4): 438-442. |