[1] 邓勃. 分析测试数据的统计处理方法[M]. 北京:清华大学出版社, 1995. DENG Bo. Statistical Processing Method for Data of Analytic and Test[M]. Beijing:Tsinghua University Press, 1995. [2] CHAMBERS J M, CLEVELAND W S, KLEINER B, et al. Graphical Methods for Data Analysis[M]. Belmont:Duxbury Press, 1983. [3] CAMPBELL D, CAMPBELL S. Introduction to Regression and Data Analysis[R]. New Haven:StatLab Workshop Series, Yale University Center for Science and Social Science Information, 2008. [4] SYKES A O. An Introduction to Regression Analysis[R]. Chicago:The Inaugural Coase Lecture, Law School, University of Chicago, 1993. [5] SCHAFFRIN B, WIESER A. On Weighted Total Least-squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421. [6] SHEN Yunzhong, LI Bofeng, CHEN Yi. An Iterative Solution of Weighted Total Least-squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238. [7] LI Bofeng, SHEN Yunzhong, LI Weixiao. The Seamless Model for Three-dimensional Datum Transformation[J]. Science China Earth Sciences, 2012, 55(12):2099-2108. [8] XU Peiling, LIU Jingnan, SHI Chuang. Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [9] 刘经南, 曾文宪, 徐培亮. 整体最小二乘估计的研究进展[J]. 武汉大学学报(信息科学版), 2013, 38(5):505-512. LIU Jingnan, ZENG Wenxian, XU Peiliang. Overview of Total Least Squares Methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):505-512. [10] 曾文宪, 方兴, 刘经南, 等. 附有不等式约束的加权整体最小二乘算法[J]. 测绘学报, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. ZENG Wenxian, FANG Xing, LIU Jingnan, et al. Weighted Total Least Squares Algorithm with Inequality Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. [11] 王乐洋, 赵英文, 陈晓勇, 等. 多元总体最小二乘问题的牛顿解法[J]. 测绘学报, 2016, 45(4):411-417. DOI:10.11947/j.AGCS.2016.20150246. WANG Leyang, ZHAO Yingwen, CHEN Xiaoyong, et al. A Newton Algorithm for Multivariate Total Least Squares Problems[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):411-417. DOI:10.11947/j.AGCS.2016.20150246. [12] LI Bofeng, WANG Miaomiao, YANG Yuanxi. Multiple Linear Regression with Correlated Explanatory Variables and Responses[J]. Survey Review, 2015. DOI:10.1179/1752270615Y.0000000006. [13] 王苗苗, 李博峰, 沈云中. 顾及自变量与因变量误差及相关性的线性回归[J]. 同济大学学报(自然科学版), 2016, 44(3):446-453. WANG Miaomiao, LI Bofeng, SHEN Yunzhong. Linear Regression with Corrected Errors of Independent and Dependent Variables[J]. Journal of Tongji University (Natural Science), 2016, 44(3):446-453. [14] KOCH K R. Least Squares Adjustment and Collocation[J]. Bulletin Géodésique, 1977, 51(2):127-135. [15] KOCH K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. 2nd ed. Berlin Heidelberg:Springer, 1999. [16] LI Bofeng, SHEN Yunzhong, ZHANG Xingfu, et al. Seamless Multivariate Affine Error-in-variables Transformation and Its Application to Map Rectification[J]. International Journal of Geographical Information Science, 2013, 27(8):1572-1592. [17] FANG Xing. Weighted Total Least Squares Solution for Application in Geodesy[D]. Hanover:Leibniz University Hanover, 2011. [18] FANG Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [19] FANG Xing. Weighted Total Least-squares with Constraints:A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469. [20] SNOW K. Topics in Total Least-squares Adjustment within the Errors-in-variables Model:Singular Cofactor Matrices and Priori Information[D]. Columbus:The Ohio State University, 2012. [21] TEUNISSEN P G J. Adjustment Theory:An Introduction (Mathematical Geodesy and Positioning)[M]. Delft, The Netherlands:VSSD, Delft University Press, 2000. |