[1] 蒋光伟, 郭春喜, 田晓静, 等. 基于多种方法构建似大地水准面模型推估特性分析[J]. 地球物理学进展, 2014, 29(1):51-56. DOI:10.6038/pg20140107. JIANG Guangwei, GUO Chunxi, TIAN Xiaojing, et al. The Analysis of Extrapolated Capability of Quasi-geoid Based on Muti-methods[J]. Progress in Geophysics, 2014, 29(1):51-56. DOI:10.6038/pg20140107. [2] HOFMANN-WELLENHOF B, MORITZ H. Physical Geodesy[M]. New York:SpringerWienNewYork, 2005. [3] KAVZOGLU T, SALA M H. Modelling Local GPS/Levelling Geoid Undulations Using Artificial Neural Networks[J]. Journal of Geodesy, 2005, 78(9):520-527. [4] 李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉:武汉大学出版社, 2003. LI Jiancheng, CHEN Junyong, NING Jinsheng, et al. The Theory of Earth's Gravity Field Approximation and Determination of the China Quasi-geoid 2000[M]. Wuhan:Wuhan University Press, 2003. [5] SANSÒ F, RUMMEL R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid[M]. Berlin:Springer, 1997. [6] GERLACH C, RUMMEL R. Global Height System Unification with GOCE:a Simulation Study on the Indirect Bias Term in the GBVP Approach[J]. Journal of Geodesy, 2013, 87(1):57-67. [7] JIANG Ziheng, DUQUENNE H. On the Combined Adjustment of a Gravimetrically Determined Geoid and GPS Levelling Stations[J]. Journal of Geodesy, 1996, 70(8):505-514. [8] KOTSAKIS C, SIDERIS M G. On the Adjustment of Combined GPS/Levelling/Geoid Networks[J]. Journal of Geodesy, 1999, 73(8):412-421. [9] SMITH D A, ROMAN D R. GEOID99 and G99SSS:1-Arc-Minute Geoid Models for the United States[J]. Journal of Geodesy, 2001, 75(9-10):469-490. [10] ROMAN D R, WANG Yanming, HENNING W, et al. Assessment of the New National Geoid Height Model,GEOID03[J]. Surveying and Land Information Science:Journal of the American Congress on Surveying and Mapping, 2004, 64(3):153-162. [11] WANG Y M, SALEH J, LI X, et al. The US Gravimetric Geoid of 2009(USGG2009):Model Development and Evaluation[J]. Journal of Geodesy, 2012, 86(3):165-180. [12] DENKER H. The European Gravimetric Quasigeoid EGG2008[C]//American Geophysical Union, Spring Meeting 2009. New York:AGU, 2009. [13] ODERA P A, FUKUDA Y, KUROISHI Y. A High-resolution Gravimetric Geoid Model for Japan from EGM2008 and Local Gravity Data[J]. Earth, Planets and Space, 2012, 64(5):361-368. [14] HUANG Jianliang, VÉRONNEAU M. Canadian Gravimetric Geoid Model 2010[J]. Journal of Geodesy, 2013, 87(8):771-790. [15] http://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/9054. [16] 李建成. 最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011[J]. 测绘学报, 2012, 41(5):651-660, 669. LI Jiancheng. The Recent Chinese Terrestrial Digital Height Datum Model:Gravimetric Quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):651-660, 669. [17] 束蝉方, 李斐, 李明峰, 等. 应用Bjerhammar方法确定GPS重力似大地水准面[J]. 地球物理学报, 2011, 54(10):2503-2509. SHU Chanfang, LI Fei, LI Mingfeng, et al. Determination of GPS/gravity Quasi-geoid Using the Bjerhammar Method[J]. Chinese Journal of Geophysics, 2011, 54(10):2503-2509. [18] 朱雷鸣. 基于相对高程异常差平差法的区域似大地水准面精化[D]. 郑州:信息工程大学, 2011. ZHU Leiming. Refining of Quasi-geoid Based on the Relative Height Anomaly Difference Adjustment[D]. Zhengzhou:Information Engineering University, 2011. [19] 孙文. 我国高分辨率三维重力场与似大地水准面研究[D]. 郑州:信息工程大学, 2014. SUN Wen. Determination of High Resolution of 3D Gravity Field and Quasi-Geoid of China[D]. Zhengzhou:Information Engineering University, 2014. [20] 邢志斌, 李姗姗, 王伟, 等. 利用垂线偏差计算高程异常差法方程的快速构建方法[J]. 武汉大学学报(信息科学版), 2016, 41(6):778-783. XING Zhibin, LI Shanshan, WANG Wei, et al. Fast Approach to Constructing Normal Equation during the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):778-783. [21] 吴晓平. 似大地水准面的定义及在空中测量中涉及的问题[J]. 测绘科学, 2006, 31(6):24-25. WU Xiaoping. Title Definition of Quasi-geoid and Some Questions Encountered in Airborne Gravimetry[J]. Science of Surveying and Mapping, 2006, 31(6):24-25. [22] 宁津生, 郭春喜, 王斌, 等. 我国陆地垂线偏差精化计算[J]. 武汉大学学报(信息科学版), 2006, 31(12):1035-1038. NING Jinsheng, GUO Chunxi, WANG Bin, et al. Refined Determination of Vertical Deflection in China Mainland Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12):1035-1038. [23] 范昊鹏, 李姗姗. 局部区域模型重力异常快速算法研究[J]. 大地测量与地球动力学, 2013, 33(6):28-30, 35. FAN Haopeng, LI Shanshan. Study on a Fast Algorithm for Model Gravity Anomalies in Local Areas[J]. Journal of Geodesy and Geodynamics, 2013, 33(6):28-30, 35. [24] 李姗姗, 吴晓平, 张传定, 等. 顾及地形与完全球面布格异常梯度项改正的区域似大地水准面精化[J]. 测绘学报, 2012, 41(4):510-516. LI Shanshan, WU Xiaoping, ZHANG Chuanding, et al. Regional Quasi-geoid Refining Considering Corrections of Terrain and Complete Spherical Bouguer Anomaly's Gradient Term[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):510-516. [25] 边少锋, 薛芳侠. 论地形垂线偏差中央区贡献的计算[J]. 测绘学报, 1997, 26(1):33-36, 57. BIAN Shaofeng, XUE Fangxia. Discussion on the Calculation of Plumb Line Deviation[J]. Acta Geodaetica et Cartographica Sinica, 1997, 26(1):33-36, 57. |