[1] 戴小蕾. 基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D]. 武汉:武汉大学, 2016. DAI Xiaolei. Real-time Precise GNSS Satellite Orbit Determination Using the SRIF Method:Theory and Implementation[D]. Wuhan:Wuhan University, 2016.
[2] 范曹明, 王胜利, 欧吉坤. GPS/BDS卫星姿态异常对PPP相位缠绕的影响及其改正模型[J]. 测绘学报, 2016, 45(10):1165-1170. DOI:10.11947/j.AGCS.2016.20160126. FAN Caoming, WANG Shengli, OU Jikun. The Impact of Yaw Attitude of Eclipsing GPS/BDS Satellites on Phase Wind-up Solutions for PPP and Its Correction Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1165-1170. DOI:10.11947/j.AGCS.2016.20160126.
[3] KOUBA J. A Simplified Yaw-attitude Model for Eclipsing GPS Satellites[J]. GPS Solutions, 2009, 13(1):1-12.
[4] BAR-SEVER Y E. A New Model for GPS Yaw Attitude[J]. Journal of Geodesy, 1996, 70(11):714-723.
[5] DILSSNER F, SPRINGER T, ENDERLE W. GPS ⅡF Yaw Attitude Control During Eclipse Season[C]//AGU Fall Meeting Abstracts. Washington, DC:AGU, 2011.
[6] LOU Yidong, ZHENG Fu, GU Shengfeng, et al. The Impact of Non-nominal Yaw Attitudes of GPS Satellites on Kinematic PPP Solutions and Their Mitigation Strategies[J]. Journal of Navigation, 2015, 68(4):718-734.
[7] ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Yaw Attitude of Eclipsing GPS Satellites and Its Impact on Solutions from Precise Point Positioning[J]. Chinese Science Bulletin, 2010, 55(32):3687-3693.
[8] DILSSNER F. GPS ⅡF-1 Satellite Antenna Phase Center and Attitude Modeling[J]. Inside GNSS, 2010, 5(6):59-64.
[9] 郭靖. 姿态、光压和函数模型对导航卫星精密定轨影响的研究[D]. 武汉:武汉大学, 2014. GUO Jing. The Impacts of Attitude, Solar Radiation and Function Model on Precise Orbit Determination for GNSS Satellites[D]. Wuhan:Wuhan University, 2014.
[10] KUANG Da, DESAI S, SIBOIS A. Observed Features of GPS Block ⅡF Satellite Yaw Maneuvers and Corresponding Modeling[J]. GPS Solutions, 2017, 21(2):739-745.
[11] DILSSNER F, SPRINGER T, GIENGER G, et al. The GLONASS-M Satellite Yaw-attitude Model[J]. Advances in Space Research, 2011, 47(1):160-171.
[12] DAI Xiaolei, GE Maorong, LOU Yidong, et al. Estimating the Yaw-attitude of BDS IGSO and MEO Satellites[J]. Journal of Geodesy, 2015, 89(10):1005-1018.
[13] 毛悦, 宋小勇, 贾小林, 等. 北斗卫星ECOM光压模型参数选择策略分析[J]. 测绘学报, 2017, 46(11):1812-1821. DOI:10.11947/j.AGCS.2017.20160485. MAO Yue, SONG Xiaoyong, JIA Xiaolin, et al. Analysis about Parameters Selection Strategy of ECOM Solar Radiation Pressure Model for Beidou Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1812-1821. DOI:10.11947/j.AGCS.2017.20160485.
[14] 毛悦, 宋小勇, 贾小林, 等. 北斗导航卫星地影状态分析[J]. 测绘学报,2014,43(4):353G359. DOI:10.13485/j.cnki.11G2089.2014.0053.MAO Yue, SONG Xiaoyong, JIA Xiaolin, et al. Earth Eclipse Status Analysis of Beidou Navigation Satellites[J].Acta Geodaetica et Cartographica Sinica, 2014, 43(4):353G359. DOI:10.13485/j.cnki.11G2089.2014.0053.
[15] CAO Xinyun, ZHANG Shoujian, KUANG Kaifa, et al. The Impact of Eclipsing GNSS Satellites on the Precise Point Positioning[J]. Remote Sensing, 2018, 10(1):94.
[16] 叶世榕, 夏凤雨, 赵乐文, 等. 偏航姿态对北斗精密单点定位的影响分析[J]. 测绘学报, 2017, 46(8):971-977. DOI:10.11947/j.AGCS.2017.20170094. YE Shirong, XIA Fengyu, ZHAO Lewen, et al. Impact Analysis of Yaw Attitude on BDS Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):971-977. DOI:10.11947/j.AGCS.2017.20170094.
[17] MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS Satellite Geometry and Attitude Models[J]. Advances in Space Research, 2015, 56(6):1015-1029.
[18] KOUBA J. A Note on the December 2013 Version of the Eclips. f Subroutine[EB/OL].[2013-09-15]. http://acc.igs.org/orbits/eclipsDec-2013note.pdf.
[19] KOUBA J. A Note on the December 2017 Version of the Eclips. f Subroutine[EB/OL].[2017-10-26]. http://acc.igs.org/orbits/May2017-elcipsVersion.pdf.
[20] HERNANDEZ-PAJARES M, JUAN J M, SANZ J, et al. The ESA/UPC GNSS-Lab Tool (gLAB):An advanced multipurpose package for GNSS data processing[C]//2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing. Noordwijk, Netherlands:IEEE, 2011:1-8.
[21] KOUBA J. A Guide to Using International GNSS Service (IGS) Products[J]. Maryland Biological Stream Survey Data Versar Inc, 2009, 4(3):106.
[22] 任晓东, 张柯柯, 李星星, 等. BeiDou、Galileo、GLONASS、GPS多系统融合精密单点[J]. 测绘学报, 2015, 44(12):1307-1313. DOI:10.11947/j.AGCS.2015.20140568. REN Xiaodong, ZHANG Keke, LI Xingxing, et al. Precise Point Positioning with Multi-constellation Satellite Systems:BeiDou、Galileo、GLONASS、GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1307-1313. DOI:10.11947/j.AGCS.2015.20140568.
[23] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)-Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697.
[24] SCHMID R, STEIGENBERGER P, GENDT G, et al. Generation of a Consistent Absolute Phase-center Correction Model for GPS Receiver and Satellite Antennas[J]. Journal of Geodesy, 2007, 81(12):781-798.
[25] GUO Fei, LI Xingxing, ZHANG Xiaohong, et al. Assessment of Precise Orbit and Clock Products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX)[J]. GPS Solutions, 2017, 21(1):279-290. |