[1] 李家彪, 王小波, 华祖根, 等. 多波束勘测原理技术与方法[M]. 北京:海洋出版社, 1999. LI Jiabiao, WANG Xiaobo, HUA Zugen, et al. Multibeam sounding surveying:principle, technology and data processing methods[M]. Beijing:Ocean Press, 1999. [2] 赵建虎, 刘经南. 多波束测深及图像数据处理[M]. 武汉:武汉大学出版社, 2008. ZHAO Jianhu, LIU Jingnan. Multibeam bathymetric surveying and image processing[M]. Wuhan:Wuhan University Press, 2008. [3] 阳凡林, 李家彪, 吴自银, 等. 浅水多波束勘测数据精细处理方法[J]. 测绘学报, 2008, 37(4):444-450, 457. YANG Fanlin, LI Jiabiao, WU Ziyin, et al. The methods of high quality post-processing for shallow multibeam data[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):444-450, 457. [4] 王海栋, 柴洪洲, 王敏. 多波束测深数据的抗差Kriging拟合[J]. 测绘学报, 2011, 40(2):238-242, 248. WANG Haidong, CHAI Hongzhou, WANG Min. Multibeam bathymetry fitting based on robust Kriging[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):238-242, 248. [5] 赵荻能, 吴自银, 周洁琼, 等. 声速剖面精简运算的改进D-P算法及其评估[J]. 测绘学报, 2014, 43(7):681-689. ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):681-689. [6] SIMMONS S M, PARSONS D R, BEST J L, et al. An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment[J]. Applied Acoustics, 2017, 126(1):81-90. [7] 严俊, 张红梅, 赵建虎, 等. 多波束声呐后向散射数据角度响应模型的改进算法[J]. 测绘学报, 2016, 45(11):1301-1307. DOI:10.11947/j.AGCS.2016.20160169. YAN Jun, ZHANG Hongmei, ZHAO Jianhu, et al. Study on improvement of multibeam backscatter angular response model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1301-1307. DOI:10.11947/j.AGCS.2016.20160169. [8] 何林帮. 基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J]. 测绘学报, 2016, 45(12):1498. DOI:10.11947/j.AGCS.2016.20160466. HE Linbang. Research on key issues of sediment classification for seabed and sub-bottom based on multi-beam and sub-bottom profile echo intensity[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12):1498. DOI:10.11947/j.AGCS.2016.20160466. [9] 金绍华, 翟京生, 刘雁春, 等. 海底入射角对多波束反向散射强度的影响及其改正[J]. 武汉大学学报(信息科学版), 2011, 36(9):1081-1084. JIN Shaohua, ZHAI Jingsheng, LIU Yanchun, et al. Influence of seafloor incidence angle on multibeam backscatter intensity and corrected method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1081-1084. [10] JACKSON D R, BAIRD A M, Crisp J J, et al. High-frequency bottom backscatter measurements in shallow water[J]. Journal of the Acoustical Society of America, 1986, 80(4):1188-1199. [11] HUGHES CLARKE J E, DANFORTH B W, VALENTINE P. Areal seabed classification using backscatter angular response at 95kHz[C]//Proceedings of SACLANT Conference on High Frequency Acoustics in Shallow Water. Lerici:NATO SACLANT Undersea Research Centre, 1997. [12] FONSECA L, MAYER L. Remote estimation of surficial seafloor properties through the application angular range analysis to multibeam sonar data[J]. Marine Geophysical Researches, 2007, 28(2):119-126. [13] 金绍华, 肖付民, 边刚, 等. 利用多波束反向散射强度角度响应曲线的底质特征参数提取算法[J]. 武汉大学学报(信息科学版), 2014, 39(12):1493-1498. JIN Shaohua, XIAO Fumin, BIAN Gang, et al. A method for extracting seabed feature parameters based on the angular response curve of multibeam backscatter strength[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1493-1498. [14] PACE N G, GAO H. Swathe seabed classification[J]. IEEE Journal of Oceanic Engineering, 1988, 13(2):83-90. [15] AUGUSTIN J M, LE SUAVE R, LURTON X, et al. Contribution of the multibeam acoustic imagery to the exploration of the sea-bottom[J]. Marine Geophysical Researches, 1996, 18(2-4):459-486. [16] ENGQUIST B, FREDERICK C, HUYNH Q, et al. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization[J]. Journal of Computational Physics, 2017, 338(2):477-492. [17] DE MOUSTIER C, MATSUMOTO H. Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetric sidescan sonar systems[J]. Marine Geophysical Researches, 1993, 15(1):27-42. [18] PRESTON J. Automated acoustic seabed classification of multibeam images of stanton banks[J]. Applied Acoustics, 2009, 70(10):1277-1287. [19] COLLIER J S, BROWN C J. Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments[J]. Marine Geology, 2005, 214(4):431-449. [20] MONTEYS X, HUNG P, SCOTT G, et al. The Use of Multibeam backscatter angular response for marine sediment characterisation by comparison with shallow electromagnetic conductivity[J]. Applied Acoustics, 2016, 112(1):181-191. [21] HANIOTIS S, CERVENKA P, NEGREIRA C, et al. Seafloor segmentation using angular backscatter responses obtained at sea with a forward-looking sonar system[J]. Applied Acoustics, 2015, 89(2):306-319. [22] 金绍华, 翟京生, 刘雁春, 等. Simrad EM多波束声纳系统回波强度数据的分析与应用[J]. 海洋技术, 2011, 30(1):48-51. JIN Shaohua, ZHAI Jingsheng, LIU Yanchun, et al. Analysis and application of echo intensity data in Simrad EM multibeam sonar system[J]. Ocean Technology, 2011, 30(1):48-51. [23] HAMILTON L J, PARNUM I. Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves[J]. Continental Shelf Research, 2011, 31(2):138-148. [24] JACKSON D R, BRIGGS K B. High-frequency bottom backscattering:roughness versus sediment volume scattering[J]. Journal of the Acoustical Society of America, 1992, 92(2):962-977. [25] LE CHENADEC G, BOUCHER J M, LURTON X. Angular dependence of K-distributed sonar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1224-1235. |