[1] 张小红, 刘经南, FORSBERG R, 等. 基于精密单点定位技术的航空测量应用实践[J]. 武汉大学学报(信息科学版), 2006, 31(1):19-22, 46. ZHANG Xiaohong, LIU Jingnan, FORSBERG R, et al. Application of precise point positioning in airborne survey[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1):19-22, 46. [2] 孙中苗, 翟振和, 肖云. 渤海湾航空重力及其在海域大地水准面精化中的应用[J]. 测绘学报, 2014, 43(11):1101-1108. DOI:10.13485/j.cnki.11-2089.2014.0174. SUN Zhongmiao, ZHAI Zhenhe, XIAO Yun. Airborne gravimetry in bo hai Bay and its role on the refining of the regional marine geoid[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11):1101-1108. DOI:10.13485/j.cnki.11-2089.2014.0174. [3] 宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3):67-72, 76. NING Jinsheng, HUANG Motao, OUYANG Yongzhong, et al. Development of marine and airborne gravity measurement technologies[J]. Hydrographic Surveying and Charting, 2014, 34(3):67-72, 76. [4] LEICK A. GPS satellite surveying[M]. 3rd ed. Hoboken, NJ:John Wiley, 2004:181-182. [5] ODIJK D. Weighting ionospheric corrections to improve fast GPS positioning over medium distances[C]//Proceedings of International Technical Meeting of Satellite Division of US Institute Navigation. Salt Lake City, USA:ION, 2000:1113-1123. [6] WIELGOSZ P, KASHANI I, GREJNER-BRZEZINSKA D. Analysis of long-range network RTK during a severe ionospheric storm[J]. Journal of Geodesy, 2005, 79(9):524-531. [7] WVBBENA G, BAGGE A, SEEBER G, et al. Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks[C]//Proceedings of the 9th International Technical Meeting of the Satellite Division of the US Institute of Navigation. Kansas City, USA:ION, 1996:1845-1852. [8] 高星伟, 陈锐志, 赵春梅. 网络RTK算法研究与实验[J]. 武汉大学学报(信息科学版), 2009, 34(11):1350-1353. GAO Xingwei, CHEN Ruizhi, ZHAO Chunmei. A network RTK algorithm and its test[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11):1350-1353. [9] LI Bofeng, SHEN Yunzhong, FENG Yanming, et al. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK[J]. Journal of Geodesy, 2014, 88(2):99-112. [10] RIZOS C. Network RTK research and implementation:a geodetic perspective[J]. Journal of Global Positioning Systems, 2002, 1(2):144-150. [11] WANNINGER L. Virtual reference stations for centimeter-level kinematic positioning[C]//Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, Oregon:ION, 2002. [12] BLEWITT G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B8):10187-10203. [13] DONG Danan, BOCK Y. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B4):3949-3966. [14] TEUNISSEN P J G. The geometry-free GPS ambiguity search space with a weighted ionosphere[J]. Journal of Geodesy, 1997, 71(6):370-383. [15] DAI Liwen, WANG Jinling, RIZOS C, et al. Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks[J]. Journal of Geodesy, 2003, 76(11-12):617-628. [16] CHEN H Y, RIZOS C, HAN S. An instantaneous ambiguity resolution procedure suitable for medium-scale GPS reference station networks[J]. Survey Review, 2004, 37(291):396-410. [17] KASHANI I, GREJNER-BRZEZINSKA D, WIELGOSZ P. Towards instantaneous network-based RTK GPS over 100 km distance[C]//Proceedings of the 60th Annual Meeting of the Institute of Navigation. Dayton, OH:ION, 2004:679-686. [18] HU G, ABBEY D A, CASTLEDEN N, et al. An approach for instantaneous ambiguity resolution for medium-to long-range multiple reference station networks[J]. GPS Solutions, 2005, 9(1):1-11. [19] WIELGOSZ P, KRANKOWSKI A, SIERADZKI R, et al. Application of predictive regional ionosphere model to medium range RTK positioning[J]. Acta Geophysica, 2008, 56(4):1147-1161. [20] TU Rui, LU Cuixian, ZHANG Pengfei, et al. The study of BDS RTK algorithm based on zero-combined observations and ionosphere constraints[J]. Advances in Space Research, 2019, 63(9):2687-2695. [21] TAKASU T, YASUDA A. Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation[C]//Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR, USA:ION, 2010:161-171. [22] TEUNISSEN P J G. An optimality property of the integer least-squares estimator[J]. Journal of Geodesy, 1999, 73(11):587-593. [23] LI Bofeng, VERHAGEN S, TEUNISSEN P J G. Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases[J]. GPS Solutions, 2014, 18(2):283-296. [24] KLOBUCHAR J A. Ionospheric effects on GPS[M]//SPILKER J J JR, AXELRAD P, PARKINSON B W, et al. Global Positioning System:Theory and Applications. Washington, DC:The American Institute of Aeronautics and Astronautics, 1996:485-515. [25] YANG Yuanxi, LI Jinlong, WANG Aibing, et al. Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system[J]. Science China Earth Sciences, 2014, 57(1):144-152. |