[1] 王乐洋, 许光煜, 温贵森. 一种相关观测的Partial EIV模型求解方法[J]. 测绘学报, 2017, 46(8):978-987. DOI:10.11947/j.AGCS.2017.20160430. WANG Leyang, XU Guangyu, WEN Guisen. A method for partial EIV model with correlated observations[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):978-987. DOI:10.11947/j.AGCS.2017.20160430. [2] MAHBOUB V. On weighted total least-squares for geodetic transformations[J]. Journal of Geodesy, 2012, 86(5):359-367. [3] FANG Xing. Weighted total least squares:necessary and sufficient conditions, fixed and random parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [4] XU Peiliang, LIU Jingnan, SHI Chuang. Total least squares adjustment in partial errors-in-variables models:algorithm and statistical analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [5] 王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J]. 测绘学报, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. WANG Leyang. YU Hang, CHEN Xiaoyong. An algorithm for partial EIV model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. [6] 曾文宪, 方兴, 刘经南, 等. 通用EIV平差模型及其加权整体最小二乘估计[J]. 测绘学报, 2016, 45(8):890-894. DOI:10.11947/j.AGCS.2016.20150156. ZENG Wenxian, FANG Xing, LIU Jingnan, et al. Weighted total least squares of universal EIV adjustment model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):890-894. DOI:10.11947/j.AGCS.2016.20150156. [7] ZHOU Yongjun, KOU Xinjian, ZHU Jianjun, et al. A Newton algorithm for weighted total least-squares solution to a specific errors-in-variables model with correlated measurements[J]. Studia Geophysica et Geodaetica, 2014, 58(3):349-375. [8] HAN Jie, ZHANG Songlin, LI Yali, et al. A general partial errors-in-variables model and a corresponding weighted total least-squares algorithm[J]. Survey Review. DOI:10.1080/00396265.2018.1530332. [9] WANG Leyang, ZHAO Yingwen. Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares[J]. Studia Geophysica et Geodaetica, 2017, 61(3):385-411. [10] SCHAFFRIN B. Adjusting the errors-in-variables model:linearized least-squares vs. nonlinear total least-squares[C]//SNEEUW N, NOVáK P, CRESPI M, et al. VⅢ Hotine-Marussi Symposium on Mathematical Geodesy. Cham:Springer International Publishing, 2015:301-307. [11] SCHAFFRIN B, WIESER A. On weighted total least-squares adjustment for linear regression[J]. Journal of Geodesy, 2008, 82(7):415-421. [12] FANG Xing. Weighted total least squares solution for application in geodesy[D]. Hanover:Leibniz University of Hanover, 2011. [13] AMIRI-SIMKOOEI A, JAZAERI S. Weighted total least squares formulated by standard least squares theory[J]. Journal of Geodetic Science, 2012, 2(2):113-124. [14] WANG Leyang, ZHAO Yingwen. Second-order approximation function method for precision estimation of total least squares[J]. Journal of Surveying Engineering, 2019, 145(1):04018011. [15] AMIRI-SIMKOOEI A R, ZANGENEH-NEJAD F, ASGARI J. On the covariance matrix of weighted total least-squares estimates[J]. Journal of Surveying Engineering, 2016, 142(3):04015014. [16] 王乐洋, 赵英文. 非线性平差精度评定的自适应蒙特卡罗法[J]. 武汉大学学报(信息科学版), 2019, 44(2):206-213, 220. WANG Leyang, ZHAO Yingwen. Adaptive Monte Carlo method for precision estimation of nonlinear adjustment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2):206-213, 220. [17] WANG Leyang, YU Fengbin. Jackknife resample method for precision estimation of weighted total least squares[J]. Communications in Statistics-Simulation and Computation. DOI:10.1080/03610918.2019.1580727. |