[1] 施晓清, 李笑诺, 杨建新. 低碳交通电动汽车碳减排潜力及其影响因素分析[J]. 环境科学, 2013, 34(1):385-394. SHI Xiaoqing, LI Xiaonuo, YANG Jianxin. Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors[J]. Chinese Journal of Environmental Science, 2013, 34(1):385-394. [2] 高云. 巴黎气候变化大会后中国的气候变化应对形势[J]. 气候变化研究进展, 2017, 13(1):89-94. GAO Yun. China's response to climate change issues after Paris_Climate Change Conference[J]. Climate Change Research, 2017, 13(1):89-94. [3] 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. [4] 吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11):1341-1356. DOI:10.11947/j.AGCS.2019.20190210. WU Huayi, HUANG Rui, YOU Lan, et al. Recent progress in taxi trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1341-1356. DOI:10.11947/j.AGCS.2019.20190210. [5] 中国公路学报编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6):1-197. Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress:2017[J]. China Journal of Highway and Transport, 2017, 30(6):1-197. [6] 李清泉. 从Geomatics到Urban Informatics[J]. 武汉大学学报(信息科学版), 2017, 42(1):1-6. LI Qingquan. From geomatics to urban informatics[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1):1-6. [7] 李德仁, 李清泉, 杨必胜, 等. 3S技术与智能交通[J]. 武汉大学学报(信息科学版), 2008, 33(4):331-336. LI Deren, LI Qingquan, YANG Bisheng, et al. Techniques of GIS, GPS and RS for the development of intelligent transportation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4):331-336. [8] 涂伟, 李清泉, 方志祥. 一种大规模车辆路径问题的启发式算法[J]. 武汉大学学报(信息科学版),2013, 38(3):307-310, 338. TU Wei, LI Qingquan, FANG Zhixiang. A heuristic algorithm for large scale vehicle routing problem[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3):307-310, 338. [9] 唐炉亮, 阚子涵, 任畅, 等. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1):75-85. DOI:10.11947/j.AGCS.2019.20170448. TANG Luliang, KAN Zihan, REN Chang, et al. Fine-grained analysis of traffic congestions at the turning level using GPS traces[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):75-85. DOI:10.11947/j.AGCS.2019.20170448. [10] VAZIFEH M M, SANTI P, RESTA G, et al. Addressing the minimum fleet problem in on-demand urban mobility[J]. Nature, 2018, 557(7706):534-538. [11] ICCT. Electric vehicle capitals:Accelerating the global transition to electric drive[C]//Proceedings of International Council on Clean Transportation.[S.l.]:ICCT, 2018. [12] TU Wei, LI Qingquan, FANG Zhixiang, et al. Optimizing the locations of electric taxi charging stations:a spatial-temporal demand coverage approach[J]. Transportation Research Part C:Emerging Technologies, 2016, 65:172-189. [13] GAN Lingwen, TOPCU U, LOW S H. Optimal decentralized protocol for electric vehicle charging[J]. IEEE Transactions on Power Systems, 2012, 28(2):940-951. [14] KIM H J, LEE J, PARK G L, et al. An efficient scheduling scheme on charging stations for smart transportation[C]//Proceedings of International Conference on Security-Enriched Urban Computing and Smart Grid.Berlin:Springer, 2010, 78:274-278. [15] TIAN Zhiyong, JUNG T, WANG Yi, et al. Real-time charging station recommendation system for electric-vehicle taxis[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(11):3098-3109. [16] TU Wei, MAI Ke, ZHANG Yatao, et al. Real-time route recommendations for E-taxies leveraging GPS trajectories[J]. IEEE Transactions on Industrial Informatics,2020. DOI:10.1109/TⅡ.2020.2990206. [17] KAELBLING L P, LITTMAN M L, MOORE A P. Reinforcement learning:a survey[J]. Journal of Artificial Intelligence Research, 1996, 4(1):237-285. [18] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [19] KOBER J, BAGNELL J A, PETERS J. Reinforcement learning in robotics:a survey[J]. The International Journal of Robotics Research, 2013, 32(11):1238-1274. [20] GAO Yong,JIANG Dan, XU Yan. Optimize taxi driving strategies based on reinforcement learning[J]. International Journal of Geographical Information Science, 2018, 32(8):1677-1696. [21] VERMA T, VARAKANTHAM P, KRAUS S, et al. Augmenting decisions of taxi drivers through reinforcement learning for improving revenues[C]//Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017).[S.l.]:ICAPS, 2017:409-417. [22] 荆朝霞, 郭文骏, 郭子暄. 基于多代理技术的电动出租车运营实时仿真系统及应用[J]. 电力系统自动化, 2016, 40(7):83-89. JING Zhaoxia, GUO Wenjun, GUO Zixuan. Real-time simulation of electric taxi operation based on multi-agent technology[J]. Automation of Electric Power Systems, 2016, 40(7):83-89. [23] TSENG C M, CHAU S C K, LIU Xue. Improving viability of electric taxis by taxi service strategy optimization:a big data study of New York city[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3):817-829. [24] 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1):86-100. GAO Yang, CHEN Shifu, LU Xin. Research on reinforcement learning technology:a review[J]. Acta Automatica Sinica, 2004, 30(1):86-100. [25] BELLMAN R. Dynamic programming and lagrange multipliers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1956, 42(10):767-769. [26] WATKINS C J C H, DAYAN P. Technical note:Q-learning[J]. Machine Learning, 1992, 8(3-4):279-292. [27] TESAURO G. Temporal difference learning and TD-Gammon[J]. Communications of the ACM, 1995, 38(3):58-68. [28] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S. l.]:AAAI Press, 2016:302-315. [29] LIN L J. Reinforcement learning for robots using neural networks[D]. Schenley Park Pittsburgh, PA, United States:Carnegie Mellon University, 1993. [30] BAUER G S, GREENBLATT J B, GERKE B F. Cost, energy, and environmental impact of automated electric taxi fleets in Manhattan[J]. Environmental Science & Technology, 2018, 52(8):4920-4928. |