[1] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12):1788-1796. GONG Jianya. Chances and challenges for development of surveying, mapping and remote sensing in the era of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1788-1796. [2] HOESER T, BACHOFER F, KUENZER C. Object detection and image segmentation with deep learning on earth observation data:a review-part II:applications[J]. Remote Sensing, 2020, 12(18):47. [3] MA L, LIU Y, ZHANG X L, et al. Deep learning in remote sensing applications:a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. [4] SHI W Z, ZHANG M, ZHANG R, et al. Change detection based on artificial intelligence:state-of-the-art and challenges[J]. Remote Sensing, 2020, 12(10):35. [5] SHI Wenzhong. Principles of modeling uncertainties in spatial data and spatial analyses[M]. Boca Raton:CRC press, 2009. [6] 史文中, 秦昆, 陈江平, 等. 可靠性地理国情动态监测的理论与关键技术探讨[J]. 科学通报, 2012, 57(24):2239-2248. SHI Wenzhong, QIN Kun, CHEN Jiangping, et al. Key theories and technologies on reliable dynamic monitoring for national geographical state[J]. Chinese Science Bulletin, 2012, 57(24):2239-2248. [7] 张钹. 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019, 1(1):4-6. ZHANG Bo. Artificial intelligence is entering the post deep learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(01):4-6. [8] 国务院. 国务院关于印发新一代人工智能发展规划的通知[J].中华人民共和国国务院公报, 2017(22):7-21. State Council. Notice of the State Council on issuing the development plan for the new generation of artificial intelligence[J]. Bulletin of the State Council of the People's Republic of China, 2017(22):7-21. [9] 史文中, 陈鹏飞, 张效康. 地理国情监测可靠性分析[J]. 测绘学报, 2017, 46(10):1620-1626. SHI Wenzhong, CHEN Pengfei, ZHANG Xiaokang. Reliability analysis geographical conditions monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46 (10):1620-1626. [10] 史文中. 空间数据与空间分析不确定性原理[M]. 北京:科学出版社, 2015. SHI Wenzhong. Principles of modeling uncertainties in spatial data and spatial analyses[M]. Beijing:Science Press, 2015. [11] 舒红, 史文中. 浅谈测量平差到空间数据分析的可靠性理论延伸[J]. 武汉大学学报(信息科学版), 2018, 43(12):1979-1985+1993. SHU Hong, SHI Wenzhong. Extension of reliability theory of surveying adjustment into spatial data analytics[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1979-1985+1993. [12] 张过, 管志超. 卫星成像质量可靠性研究初探[J]. 武汉大学学报(信息科学版), 2018, 43(12):1954-1961. ZHANG Guo, GUAN Zhichao. Primary research on reliability of satellite imaging quality[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1954-1961. [13] 张华. 遥感数据可靠性分类方法研究[D]. 徐州:中国矿业大学, 2012. ZHANG Hua. Study on reliable classification methods based on remotely sensed image[D]. Xuzhou:China University of Mining and Technology, 2012. [14] 张璨, 张明英. 人工智能深度学习算法可靠性评估方法研究[J]. 信息技术与标准化, 2018, (8):38-42. ZHANG Can, ZHANG Mingying. Research on the reliability assessment method of artificial intelligence deep learning algorithms[J]. Standardization Research,2018, (8):38-42. [15] 孙金彦, 徐南, 董丹丹, 等. 不同空间分辨率遥感数据识别湖泊的误差分析[J]. 人民长江, 2019, 50(4):25-31. SUN Jinyan, XU Nan, Dong Dandan, et al. Error analysis on lakes mapping accuracy by remote sensing data of different spatial resolution[J]. Yangtze River, 2019, 50(4):25-31. [16] SHI W Z, HAO M. Analysis of spatial distribution pattern of change-detection error caused by misregistration[J]. International journal of remote sensing, 2013, 34(19):6883-6897. [17] KAPLAN A, HAENLEIN M. Siri, Siri, in my hand:who's the fairest in the land? on the interpretations, illustrations, and implications of artificial intelligence[J]. Business Horizons, 2019, 62(1):15-25. [18] 高志宏, 周旭, 程滔. 地理国情普查中容易混分地表覆盖类型定量统计与分析[J]. 测绘通报, 2015, (6):32-34. GAO Zhihong, ZHOU Xu, CHENG Tao. Statistical analysis of the confusing land cover types in China geography census[J], Bulletin of Surveying and Mapping, 2015, (6):32-34. [19] 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(06):1208-1217. CHENG Keyang, WANG Ning,SHI Wenxi, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(06):1208-1217. [20] QIU S L, LIU Q H, ZHOU S J, et al. Review of artificial intelligence adversarial attack and defense technologies[J]. Applied Sciences, 2019, 9(5):909. [21] 史文中, 张鹏林, 陈江平 等. 可靠性时空数据分析[M]. 北京:科学出版社, 2021. SHI Wenzhong, ZHANG Penglin, CHEN Jiangping, et al. Reliability in spatiotemporal data analysis[M]. Beijing:Science Press, 2021. [22] 晁剑, 张慧芳, 许长军, 等. 双时相影像联合不确定性对变化检测精度的影响机理探索[J]. 应用科学学报, 2020, 38(6):916-923. CHAO Jian, ZHANG Huifang, XU Changjun, et al. Research on influence mechanism of joint uncertainty of bio-images on change detection accuracy[J]. Journal of Applied Sciences-Electronics and Information Engineering, 2020, 38(6):916-923. [23] HE P F, SHI W Z, ZHANG H, et al. A novel dynamic threshold method for unsupervised change detection from remotely sensed images[J]. Remote sensing letters, 2014, 5(4):396-403. [24] HE P F, SHI W Z, MIAO Z L, et al. Advanced Markov random field model based on local uncertainty for unsupervised change detection[J]. Remote sensing letters, 2015, 6(9):667-676. [25] ZHANG X K, SHI W Z, LU Z Y, et al. Land cover change detection from high-resolution remote sensing imagery using multitemporal deep feature collaborative learning and a semi-supervised Chan-Vese model[J]. Remote Sensing, 2019, 11(23):20. [26] SHI W Z, SHAO P, HAO M, et al. Fuzzy topology-based method for unsupervised change detection[J]. Remote sensing letters, 2016, 7(1):81-90. [27] ZHANG P L, LU Z Y, SHI W Z. Local spectrum-trend similarity approach for detecting land-cover change by using SPOT-5 satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11(4):738-742. [28] SUN Y, ZHANG X C, ZHAO X Y, et al. Extracting building boundaries from high resolution optical images and LiDAR data by integrating the convolutional neural network and the active contour model[J]. Remote Sensing, 2018, 10(9):1459. [29] CAI L P, SHI W Z, HAO M, et al. A multi-feature fusion-based change detection method for remote sensing images[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(12):2015-2022. [30] ZHAN T, GONG M G, JIANG X M, et al. Unsupervised scale-driven change detection with deep spatial-spectral features for VHR images[J]. Ieee Transactions on Geoscience and Remote Sensing, 2020, 58(8):5653-5665. [31] ZHANG P L, SHI W Z, WONG M S, et al. A reliability-based multi-algorithm fusion technique in detecting changes in land cover[J]. Remote Sensing, 2013, 5(3):1134-1151. [32] CAI L P, SHI W Z, ZHANG H, et al. Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images[J]. International Journal of Remote Sensing, 2016, 37(22):5457-5471. [33] TAN K, ZHANG Y S, WANG X, et al. Object-based change detection using multiple classifiers and multi-scale uncertainty analysis[J]. Remote Sensing, 2019, 11(3):17. [34] SONG A, KIM Y, HAN Y. Uncertainty analysis for object-based change detection in very high-resolution satellite images using deep learning network[J]. Remote Sensing, 2020, 12(15):26. [35] WANG Q M, ATKINSON P M, SHI W Z. Fast subpixel mapping algorithms for subpixel resolution change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(4):1692-1706. [36] WANG S, QUAN D, LIANG X F, et al. A deep learning framework for remote sensing image registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:148-164. [37] SHI W Z, ZHANG M, KE H F, et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020:1-19. [38] HARTLING S, SAGAN V, SIDIKE P, et al. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning[J]. Sensors, 2019, 19(6):1284. [39] YANG G, ZHANG Q, ZHANG G X. EANet:edge-aware network for the extraction of buildings from aerial images[J]. Remote Sensing, 2020, 12(13):2161. [40] LU X Y, ZHONG Y F, ZHENG Z, et al. Multi-scale and multi-task deep learning framework for automatic road extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9362-9377. [41] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415. [42] HOESER T, KUENZER C. Object detection and image segmentation with deep learning on earth observation data:a review-part I:evolution and recent trends[J]. Remote Sensing, 2020, 12(10):1667. [43] YOU Y N, CAO J Y, ZHOU W L. A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios[J]. Remote Sensing, 2020, 12(15):40. [44] CHERIYADAT A M. Unsupervised feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):439-451. [45] LI Y S, CHEN W, ZHANG Y J, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020, 250:112045. [46] FU Q, YU X C, WEI X P, et al. Semi-supervised classification of hyperspectral imagery based on stacked autoencoders[C]//Proceedings of the 8th International Conference on Digital Image Processing. Bellingham:[s.n.], 2016. [47] RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing, 2020, 12(9):1432. [48] YAN Y M, TAN Z C, SU N. A data augmentation strategy based on simulated samples for ship detection in rgb remote sensing images[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):276. [49] SUN X, WANG B, WANG Z R, et al. Research progress on few-shot learning for remote sensing image interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:2387-2402. [50] HU F, XIA G S, HU J, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. [51] LIU J F, CHEN K M, XU G L, et al. Convolutional neural network-based transfer learning for optical aerial images change detection[J]. Ieee Geoscience and Remote Sensing Letters, 2020, 17(1):127-131. [52] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations:an overview of interpretability of machine learning[C]//Proceedings of 2018 IEEE International Conference on Data Science and Advanced Analytics. New York:IEEE, 2018:80-89. [53] ARRIETA A B, DIAZ-RODRIGUEZ N, DEL SER J, et al. Explainable artificial intelligence:concepts, taxonomies, opportunities and challenges toward responsible AI[J]. Information Fusion, 2020, 58:82-115. [54] 化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(03):1-12. HUA Yingying, ZHANG Daichi, GE Shiming. Research progress in the interpretability of deep learning models[J]. Journal of Cyber Security, 2020, 5(03):1-12. [55] HUNG S C, WU H C, TSENG M H. Remote sensing scene classification and explanation using RSSCNet and LIME[J]. Applied Sciences-Basel, 2020, 10(18):24. [56] XIE X, ZHOU X R, LI J Z, et al. An ontology-based framework for complex urban object recognition through integrating visual features and interpretable semantics[J]. Complexity, 2020, 2020:15. [57] CAMPOS-TABERNER M, GARCIA-HARO F J, MARTINEZ B, et al. Understanding deep learning in land use classification based on Sentinel-2 time series[J]. Scientific Reports, 2020, 10(1):12. [58] WOLANIN A, MATEO-GARCIA G, CAMPS-VALLS G, et al. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt[J]. Environmental Research Letters, 2020, 15(2):12. [59] YAN X, ZANG Z, JIANG Y Z, et al. A spatial-temporal interpretable deep learning model for improving interpretability and predictive accuracy of satellite-based PM2. 5[J]. Environmental Pollution, 2021, 273, 116459. [60] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proceedings of 2015 International Conference on learning Representations. San Diego:[s.n.], 2015. [61] 中国电子工业标准化技术协会. 人工智能 深度学习算法评估规范:T/CESA1026-2018[S]. 北京:[s.n.], 2018. China Electronics Standardization Association. Artificial intelligence-assessment specification for deep learning algorithms:T/CESA 1026-2018[S]. Beijing:[s.n.], 2018. [62] 全国信息安全标准化技术委员会. 人工智能安全标准化白皮书[EB/OL].[2020-12-10]. https://www.tc260.org.cn/front/postDetail.html?id=2019031151659. National Information Security Standardization Technical Committee. White paper on standardization of artificial intelligence security[EB/OL].[2020-12-10]. https://www.tc260.org.cn/front/postDetail.html?id=2019031151659. [63] International Electro-Technical Commission. Information technology-artificial intelligence-overview of trustworthiness in artificial intelligence:ISO/IEC TR 24028:2020[S]. Geneva:International Organization for Standardization. 2020. [64] 张效康. 地理国情监测数据可靠性分析与控制方法研究[D]. 武汉:武汉大学, 2017. ZHANG Xiaokang. Reliability analysis and controlling methods for national geographic statemonitoring data[D]. Wuhan:Wuhan University, 2017. [65] 武旭芳. 地理国情遥感监测数据变化检测可靠性控制算法[J]. 北京测绘, 2020, 34(11):1559-1563. WU Xufang. Reliability control method of remote sensing monitoring data change detectionin geographical situation[J]. Beijing Surveying and Mapping, 2020, 34(11):1559-1563. |