[1] 郭仁忠, 林浩嘉, 贺彪, 等. 面向智慧城市的GIS框架[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1829-1835. GUO Renzhong, LIN Haojia, HE Biao, et al. GIS framework for smart cities[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1829-1835. [2] MORGAN J T, LITTLE J D C. Synchronizing traffic signals for maximal bandwidth[J]. Operations Research, 1964, 12(6): 896-912. [3] LITTLE J D C. The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14(4): 568-594. [4] GARTNER N H, ASSMAN S F, LASAGA F, et al. A multi-band approach to arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25(1): 55-74. [5] PILLAI R S, RATHI| A K, L COHEN S. A restricted branch-and-bound approach for generating maximum bandwidth signal timing plans for traffic networks[J]. Transportation Research Part B: Methodological, 1998, 32(8): 517-529. [6] PAPPIS C P, MAMDANI E H. A fuzzy logic controller for a traffic junction[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1977, 7(10): 707-717. [7] LI Jinjian, DRIDI M, EL-MOUDNI A. A cooperative traffic control for the vehicles in the intersection based on the genetic algorithm[C]//2016 4th IEEE International Colloquium on Information Science and Technology (CiSt). Tangier, Morocco:IEEE, 2016: 627-632. [8] HOSSAIN M S, SINHA H, MUSTAFA R. A Belief rule based expert system to control traffic signals under uncertainty[C]//Proceedings of 2015 International Conference on Computer and Information Engineering (ICCIE). Rajshahi, Bangladesh: IEEE, 2015: 83-86. [9] 孙文彬, 熊婷. 历史数据和强化学习相结合的低频轨迹数据匹配算法[J]. 测绘学报, 2016, 45(11): 1328-1334. SUN Wenbin, XIONG Ting. A low-sampling-rate trajectory matching algorithm in combination of history trajectory and reinforcement learning[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1328-1334. [10] ABDOOS M, MOZAYANI N, BAZZAN A L C. Traffic light control in non-stationary environments based on multi agent Q-learning[C]//Proceedings of 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, DC, USA: IEEE, 2011: 1580-1585. [11] CHIN Y K, LEE L K, BOLONG N, et al. Exploring Q-learning optimization in traffic signal timing plan management[C]//Proceedings of 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks. Bali, Indonesia: IEEE, 2011: 269-274. [12] BRYS T, PHAM T T, TAYLOR M E. Distributed learning and multi-objectivity in traffic light control[J]. Connection Science, 2014, 26(1): 65-83. [13] NING Zhaolong, ZHANG Kaiyuan, WANG Xiaojie, et al. Joint computing and caching in 5G-envisioned Internet of vehicles: a deep reinforcement learning-based traffic control system[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,0276(99): 1-12. [14] ZHOU Pengyuan, BRAUD T, ALHILAL A, et al. ERL: edge based reinforcement learning for optimized urban traffic light control[C]//Proceedings of 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Kyoto, Japan: IEEE, 2019: 849-854. [15] JOO H, AHMED S H, LIM Y. Traffic signal control for smart cities using reinforcement learning[J]. Computer Communications, 2020, 154: 324-330. [16] LIANG Xiaoyuan, DU Xunsheng, WANG Guiling, et al. A deep reinforcement learning network for traffic light cycle control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1243-1253. [17] ZHENG Ye, GUO Renzhong, MA Ding, et al. A novel approach to coordinating green wave system with adaptation evolutionary strategy[J]. IEEE Access, 2020, 8: 214115-214127. [18] GAO Yong, JIANG Dan, XU Yan. Optimize taxi driving strategies based on reinforcement learning[J]. International Journal of Geographical Information Science, 2018, 32(8): 1677-1696. [19] HU Yujing, DA Qing, ZENG Anxiang, et al. Reinforcement learning to rank in E-commerce search engine: formalization, analysis, and application[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: ACM, 2018: 368-377. [20] SUTTON R, BARTO A. Reinforcement learning: an introduction [M]: MIT: MIT Press, 1998. [21] LITTMAN M L. Reinforcement learning improves behaviour from evaluative feedback[J]. Nature, 2015, 521(7553): 445-451. [22] KRAJZEWICZ D, HERTKORN G, RÖSSEL C, et al. SUMO (simulation of urban mobility); an open-source traffic simulation [C]//Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM2002). American University, Sharjah, United Arab Emirates: MESM,2002. [23] WEBSTER F V. Traffic signal settings[R]. London:Road Research Laboratory, 1958. |