测绘学报 ›› 2021, Vol. 50 ›› Issue (9): 1203-1210.doi: 10.11947/j.AGCS.2021.20210191

• 智能化测绘 • 上一篇    下一篇

面向地理路网的交通信号智能协同控制方法

郑晔1,2, 郭仁忠1,2, 马丁1,2, 赵志刚1,2, 李晓明1,2   

  1. 1. 深圳大学建筑与城市规划学院智慧城市研究院, 广东 深圳 518060;
    2. 深圳市空间信息智能感知与服务重点实验室, 广东 深圳 518060
  • 收稿日期:2021-04-13 修回日期:2021-06-21 发布日期:2021-10-09
  • 通讯作者: 赵志刚 E-mail:zhaozgrisc@szu.edu.cn
  • 作者简介:郑晔(1989-),男,博士,博士后,研究方向为地理AI。E-mail:zhengye@szu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB2100700;2019YFB2103104;2019YFB210310); 中国博士后基金(2019M663070)

Multi-agent cooperative control for traffic signal on geographic road network

ZHENG Ye1,2, GUO Renzhong1,2, MA Ding1,2, ZHAO Zhigang1,2, LI Xiaoming1,2   

  1. 1. Research Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China;
    2. Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen 518060, China
  • Received:2021-04-13 Revised:2021-06-21 Published:2021-10-09
  • Supported by:
    The National Key Research and Development Program of China (Nos. 2018YFB2100700; 2019YFB2103104; 2019YFB210310); China Postdoctoral Science Foundation (No. 2019M663070)

摘要: 城市交通运行效率是影响城市生产力发展的重要因素之一,也是智慧城市建设过程中的重要研究课题。随着计算机技术的发展,人工智能特别是强化学习在交通信号控制中发挥重要作用。目前,基于强化学习的交通信号控制主要针对单路口或城市干道进行优化,面向城市地理路网区域协调控制研究较少。本文结合马尔可夫序列决策,提出一种基于强化学习的双层智能体协同控制方法。第1层,针对单个路口实现粗调训练,智能体通过观察路口每一车道的排队长度调控信号配时,实现单个路口不堵塞;第2层,将多个粗调训练后的智能体模型放入地理网络中,实现多路口的协同微调训练。本文以宁波某中学片区的交通协调为优化目标展开试验。结果表明,调控方法与原有固定配时方案相比,具有更高的通行效率。

关键词: 地理路网, 交通信号控制, 协同控制, 强化学习

Abstract: Urban traffic efficiency is one of the key factors affecting urban productivity and is also a crucial topic in the process of smart city construction. With the development of computer technology, artificial intelligence, especially reinforcement learning, plays an increasingly important role in traffic signal control. Currently, traffic signal control based on reinforcement learning is mainly used for the optimization for simple scenarios, such as single road intersection or urban arterial road, not yet for regional coordinated control on an urban geographic road network. This paper is motivated to fill this gap by proposing a two-layered agent cooperative control approach based on reinforcement learning. The first layer implements a coarse-tuning training at a single intersection, where the agents make the single intersection non-blocking by observing the queue length for each lane; In the second layer, the coarse-tuning-trained agent models are put into the geographic network to execute the cooperative fine-tuning training at multiple intersections. This paper conducts the optimization-orientated traffic coordination through a case study of a middle school area in Ningbo. The results show that our control approach is superior to the traditional fixed timing scheme in terms of the passage efficiency.

Key words: geographic road network, traffic signal control, cooperative control, reinforcement learning

中图分类号: