[1] 焦文海,魏子卿,郭海荣,等.联合GPS基准站和验潮站数据确定海平面绝对变化[J].武汉大学学报(信息科学版), 2004, 29(10):901-904. JIAO Wenhai, WEI Ziqing, GUO Hairong, et al. Determination of the absolute rate of sea level by using GPS reference station and tide gauge data [J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):901-904. [2] 李大炜,李建成,金涛勇,等.利用多代卫星测高资料监测1993~2011年全球海平面变化[J].武汉大学学报(信息科学版), 2012, 37(12):1421-1424. LI Dawei, LI Jiancheng, JIN Taoyong, et al. Monitoring global sea level change from 1993 to 2011 using TOPEX and Jason altimeter missions [J].Geomatics and Information Science of Wuhan University, 2012, 37(12): 1421-1424. [3] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017,46(10):1389-1398. DOI:10.11947/j.AGCS.2017.20170282. JIN Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R) [J].Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398. DOI:10.11947/j.AGCS.2017.20170282. [4] LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver [J]. Advances in Space Research, 2013, 51(8): 1301-1310. [5] LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska [J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204. [6] 张双成,南阳,李振宇,等.GNSS-MR技术用于潮位变化监测分析[J].测绘学报, 2016, 45(9): 1042-1049.DOI:10.11947/j.AGCS.2016.20150498. ZHANG Shuangcheng, NAN Yang, LI Zhenyu, et al. Analysis of tide variation monitored by GNSS-MR [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1042-1049.DOI:10.11947/j.AGCS.2016.20150498. [7] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9):1168-1178. DOI:10.11947/j.AGCS.2020.20200228. HE Xiufeng, WANG Jie, WANG Xiaolei, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178. DOI:10.11947/j.AGCS.2020.20200228. [8] 周威, 刘立龙, 黄良珂, 等. GLONASS卫星SNR信号的雪深探测[J]. 遥感学报, 2018, 22(5): 889-899. ZHOU Wei, LIU Lilong, HUANG Liangke, et al. Monitoring snow depth based on the SNR signal of GLONASS satellites [J]. National Remote Sensing Bulletin, 2018, 22(5): 889-899. [9] 张双成, 戴凯阳, 南阳, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240. ZHANG Shuangcheng, DAI Kaiyang, NAN Yang, et al. Preliminary research on GNSS-MR for snow depth [J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 234-240. [10] 边少锋, 周威, 刘立龙,等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9): 1179-1188. DOI:10.11947/j.AGCS.2020.20200268. BIAN Shaofeng, ZHOU Wei, LIU Lilong, et al. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1179-1188. DOI:10.11947/j.AGCS.2020.20200268. [11] 王泽民, 刘智康, 安家春,等. 基于GPS和北斗信噪比观测值的雪深反演及其误差分析[J].测 绘 学 报, 2018, 47(1): 8-16. DOI:10.11947/j.AGCS.2018.20160644. WANG Zemin, LIU Zhikang, AN Jiachun, et al. Snow depth detection and error analysis derived from SNR of GPS and BDS [J].Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 8-16. DOI:10.11947/j.AGCS.2018.20160644. [12] 梁月吉,任超,黄仪邦,等.利用GPS-IR监测土壤湿度的多星线性回归反演模型[J]. 测绘学报, 2020, 49(7): 1001-1595. DOI:10.11947/j.AGCS.2020.20190095. LIANG Yueji, REN Chao, HUANG Yibang, et al. Multi-star linear regression retrieval model for monitoring soil moisture using GPS-IR [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 1001-1595. DOI:10.11947/j.AGCS.2020.20190095. [13] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11): 2735-2744. YAN Songhua, GONG Jianya, ZHANG Xunxie, et al. Ground based GNSS-R observations for soil moisture [J]. Chinese Journal of Geophysics, 2011, 54(11): 2735-2744. [14] LARSON K M, SMALL E E, GUTMANN E, et al. Use of GPS receivers as a soil moisture network for water cycle studies [J]. Geophysical Research Letters, 2008, 35(24): L24405. [15] 吴学睿, 夏俊明, 白伟华, 等. GNSS-R/IR监测地表冻融状态对延迟多普勒波形和多路径数据影响分析[J]. 测绘学报, 2019, 48(8): 1059-1066. DOI:10.11947/j.AGCS.2019.20180038. WU Xuerui, XIA Junming, BAI Weihua, et al. Theoretical analysis of soil freeze/thaw process on DDM waveform and multipath in order for GNSS-R/IR applications[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1059-1066. DOI:10.11947/j.AGCS.2019.20180038. [16] LÖFGREN J S, HAAS R, SCHERNECK H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world [J]. Journal of geodynamics, 2014(80): 66-80. [17] LARSON K M, RAY R D, WILLIAMS S. A ten-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge [J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307. DOI:10.1175/JTECH-D-16-0101.1 [18] SANTAMARÍA-GÓMEZ A, WATSON C. Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia [J]. GPS Solutions, 2016, 21(2): 1521-1886. [19] WILLIAMS S D P, NIEVINSKI F G. Tropospheric delays in ground-based GNSS multipath reflectometry—experimental evidence from coastal sites [J]. Journal of Geophysical Research Solid Earth, 2017, 122(3): 2310-2327. [20] LÖFGREN J S, HAAS R. Sea level measurements using multi-frequency GPS and GLONASS observations [J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-13. [21] JIN Shuanggen, QIAN Xiaodong, WU X. Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R): first results and evaluation [J]. Global & Planetary Change. 2017, 149:20-25. DOI:10.1016/j.gloplacha.2016.12.010. [22] 陈发德, 刘立龙, 黄良珂, 等. 基于多模GNSS-MR 海平面测高研究 [J]. 地球物理学进展, 2018, 33(5): 1767-1772. CHEN Fade, LIU Lilong, HUANG Liangke, et al. Sea surface height monitoring based on multi-GNSS-MR [J]. Progress in Geophysics, 2018, 33(5): 1767-1772. [23] WANG Xiaolei, HE Xiufeng, ZHANG Qin. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval [J]. Remote Sensing of Environment. 2019, 231: 111229-111249. [24] BÖHM J, MÖLLER G, SCHINDELEGGRE M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w) [J]. GPS Solutions, 2015, 19(3): 433-441. [25] BÖHM J, SCHUH H. Vienna mapping functions in VLBI analyses [J]. Geophysical Research Letters, 2004, 31(1): 603-608. DOI:10.1029/2003GL018984. [26] BÖHM J, WERL B, SCHUH H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data [J]. Journal of Geophysical Research-Solid Earth, 2006 111(B2): 406-415. DOI:10.1029/2005JB003629. [27] BENNETT G G. The calculation of astronomical refraction in marine navigation [J]. Journal of Navigation, 1982, 35:255-259. DOI:10.1017/S0373463300022037. [28] STRANDBERG J. New methods and applications for interferometric GNSS reflectometry [D]. Gothenburg, Sweden: Chalmers University of Technology, 2020. [29] YANG Yuanxi, SONG Lijie, XU Tianhe. Robust estimator for correlated observations based on bifactor equivalent weights [J]. Journal of Geodesy, 2002, 76 (6):353-8. [30] WANG Xiaolei, HE Xiufeng, ZHANG Qin, et al. The preliminary discussion of the potential of GNSS-IR technology for terrain retrievals[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 79-88. [31] WANG Xiaolei, HE Xiufeng, ZHANG Qin, et al. Angle dependence analysis method to determine SNR arc applied to GNSS-MR sea level retrieval[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 14-26. |