测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1119-1129.doi: 10.11947/j.AGCS.2022.20220105
孙和平1,2, 周江存1, 徐建桥1
收稿日期:
2022-02-28
修回日期:
2022-04-22
发布日期:
2022-08-13
作者简介:
孙和平(1955-),男,博士,研究员,中国科学院院士,研究方向为地球微小形变与重力场变化。E-mail:heping@whigg.ac.cn
基金资助:
SUN Heping1,2, ZHOU Jiangcun1, XU Jianqiao1
Received:
2022-02-28
Revised:
2022-04-22
Published:
2022-08-13
Supported by:
摘要: 获取固体地球在内外力驱动下的形变特征是认识地球内部结构和动力过程的关键,全球和区域形变的观测与研究是高精度时空基准建立和维持的重要内容之一。本文系统介绍了地球形变理论模拟研究的主要进展,重点介绍了大气、海洋、陆地水和热在地表的负荷效应,以及内部的地震位错产生的形变问题。内容涉及基本的地球(热)弹性变形的初边值理论,及其有效求解方法与计算过程中遇到的困难及解决方案。最后在弹性形变的基础上,结合现今观测精度不断提高和人类活动对环境影响的背景,展望了未来在地球形变理论上的发展需求与应用前景。
中图分类号:
孙和平, 周江存, 徐建桥. SNREI地球形变理论模拟研究进展[J]. 测绘学报, 2022, 51(7): 1119-1129.
SUN Heping, ZHOU Jiangcun, XU Jianqiao. Progress in deformation modeling of an SNREI Earth[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1119-1129.
[1] 许厚泽.固体地球潮汐[M].武汉:湖北科学技术出版社, 2010. XU Houze. Solid Earth's tides[M]. Wuhan:Hubei Science and Technology Press, 2010. [2] BOUSSINESQ J. Équilibre d'élasticité d'un sol isotrope sans pesanteur, supportant différents poids[J]. Comptes Rendus de l'Académie des Sciences, 1878, 86:1260-1263. [3] LOVE A E H. Some problems of geodynamics[M]. London:Cambridge University Press, 1911. [4] SUN W K, OKUBO S. Effects of Earth's spherical curvature and radial heterogeneity in dislocation studies-for a point dislocation[J]. Geophysical Research Letters, 2002, 29(12):1605. [5] TAKEUCHI H, SAITO M. Seismic surface waves[J]. Methods in Computational Physics:Advances in Research and Applications, 1972, 11:217-295. [6] 郭俊义.地球物理学基础[M].北京:测绘出版社, 2001. GUO Junyi. Fundamentals of geophysics[M]. Beijing:Surveying and Mapping Press, 2001. [7] DZIEWONSKI A M, ANDERSON D L. Preliminary reference earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4):297-356. [8] DAHLEN F A. The normal modes of a rotating, elliptical Earth[J]. Geophysical Journal International, 1968, 16(4):329-367. [9] SMITH M L. Translational inner core oscillations of a rotating, slightly elliptical Earth[J]. Journal of Geophysical Research, 1976, 81(17):3055-3065. [10] WAHR J M. A normal mode expansion for the forced response of a rotating Earth[J]. Geophysical Journal International, 1981, 64(3):651-675. [11] BACKUS G, GILBERT F. The rotational splitting of the free oscillations of the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 1961, 47(3):362-371. [12] DAHLEN F A, SAILOR R V. Rotational and elliptical splitting of the free oscillations of the Earth[J]. Geophysical Journal International, 1979, 58(3):609-623. [13] SHIDA T. On the elasticity of the Earth and the Earth's crust[M]. Memoirs of the College of Science and Kyoto:Kyoto Imperial University, 1912. [14] 梁昆淼.数学物理方法[M].北京:人民教育出版社, 1979. LIANG Kunmiao. Mathematical methods for physics[M]. Beijing:People's Education Press, 1979. [15] SUN W K, SJÖBERG L E. Gravitational potential changes of a spherically symmetric Earth model caused by a surface load[J]. Geophysical Journal International, 1999, 137(2):449-468. [16] GUO J Y, LI Y B, HUANG Y, et al. Green's function of the deformation of the Earth as a result of atmospheric loading[J]. Geophysical Journal International, 2004, 159(1):53-68. [17] SUN W K, OKUBO S, VANÍČEK P. Global displacements caused by point dislocations in a realistic Earth model[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B4):8561-8577. [18] ZHOU J, PAN E, BEVIS M. A point dislocation in a layered, transversely isotropic and self-gravitating Earth. Part I:analytical dislocation Love numbers[J]. Geophysical Journal International, 2019, 217(3):1681-1705. [19] LONGMAN I M. A Green's function for determining the deformation of the earth under surface mass loads:2. Computations and numerical results[J]. Journal of Geophysical Research, 1963, 68(2):485-496. [20] 汪汉胜,许厚泽,李国营. SNREI地球模型负荷勒夫数数值计算的新进展[J].地球物理学报, 1996, 39(S1):182-189. WANG Hansheng, XU Houze, LI Guoying. Improvement of computations of load Love numbers of SNREI Earth model[J]. Chinese Journal of Geophysics, 1996, 39(S1):182-189. [21] MARTINEC Z. Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical Earth[J]. Geophysical Journal International, 2000, 142(1):117-141. [22] TANAKA Y, KLEMANN V, FLEMING K, et al. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth[J]. Geophysical Journal International, 2009, 176(3):715-739. [23] TANAKA Y, KLEMANN V, MARTINEC Z, et al. Spectral-finite element approach to viscoelastic relaxation in a spherical compressible Earth:application to GIA modelling[J]. Geophysical Journal International, 2011, 184(1):220-234. [24] 廖彬彬,徐建桥,孙和平,等.利用谱元法计算SNREI地球的表面负荷变形[J].地球物理学报, 2019, 62(7):2382-2393. LIAO Binbin, XU Jianqiao, SUN Heping, et al. Spectral element method to load deformation in a SNREI Earth[J]. Chinese Journal of Geophysics, 2019, 62(7):2382-2393. [25] PAN E, CHEN J Y, BEVIS M, et al. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth[J]. Geophysical Journal International, 2015, 203(3):2150-2181. [26] GILBERT F, BACKUS G. Elastic-gravitational vibrations of a radially stratified sphere[M]//HERRMANN G. Dynamics of Stratified Solids. New York:American Society of Mechanical Engineers, 1968:82-95. [27] CHEN J Y, PAN E, BEVIS M. Accurate computation of the elastic load Love numbers to high spectral degree for a finely layered, transversely isotropic and self-gravitating Earth[J]. Geophysical Journal International, 2018, 212(2):827-838. [28] PAN E. Green's functions for geophysics:a review[J]. Reports on Progress in Physics, 2019, 82(10):106801. [29] 周江存,潘尔年,孙和平,等.地球变形近似解析解的构建及应用[J].地球物理学报, 2021, 64(10):3521-3531. ZHOU Jiangcun, PAN Ernian, SUN Heping, et al. The construction of an approximated analytical solution to Earth's deformation and its application[J]. Chinese Journal of Geophysics, 2021, 64(10):3521-3531. [30] PEKERIS C L. The bodily tide and the yielding of the Earth due to tidal loading[J]. Geophysical Journal International, 1978, 52(3):471-478. [31] MERRIAM J B. The series computation of the gravitational perturbation due to an ocean tide[J]. Physics of the Earth and Planetary Interiors, 1980, 23(2):81-86. [32] RAY R D, SANCHEZ B V. Radial deformation of the Earth by oceanic tidal loading[R]. NASA Technical Memorandum 100743, Greenbelt:NASAC, 1989. [33] 许厚泽,陈振邦,杨怀冰.海洋潮汐对重力潮汐观测的影响[J].地球物理学报, 1982, 25(2):120-129. XU Houze, CHEN Zhenbang, YANG Huaibing. The effect of oceanic tides on the gravity tidal observations[J]. Chinese Journal of Geophysics, 1982, 25(2):120-129. [34] SCHRAMA E J O. Three algorithms for the computation of tidal loading and their numerical accuracy[J]. Journal of Geodesy, 2005, 78(11):707-714. [35] 周江存,孙和平,徐建桥,等.海潮负荷计算的球谐展开方法[C]//2014年大地测量研究进展学术研讨会论文集.武汉:湖北科学技术出版社, 2014:343-351. ZHOU Jiangcun, SUN Heping, XU Jianqiao, et al. Spherical harmonic expansion method to computation of ocean tide loading[C]//Proceedings of 2014 Progress in Geodesy and Geodynamics. Wuhan:Hubei Science and Technology Press, 2014:343-351. [36] AGNEW D C. NLOADF:a program for computing ocean-tide loading[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5109-5110. [37] GOAD C C. Gravimetric tidal loading computed from integrated Green's functions[J]. Journal of Geophysical Research:Solid Earth, 1980, 85(B5):2679-2683. [38] MATSUMOTO K, SATO T, TAKANEZAWA T, et al. GOTIC2:a program for computation of oceanic tidal loading effect[J]. Journal of the Geodetic Society of Japan, 2001, 47(1):243-248. [39] HWANG C, HUANG Jiufu. SGOTL:a computer program for modeling high-resolution, height-dependent gravity effect of ocean tide loading[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23(2):219-229. [40] MARTENS H R, RIVERA L, SIMONS M. LoadDef:a Python-based toolkit to model elastic deformation caused by surface mass loading on spherically symmetric bodies[J]. Earth and Space Science, 2019, 6(2):311-323. [41] ZHOU J C, HWANG C, SUN H P, et al. Precise determination of ocean tide loading gravity effect for absolute gravity stations in coastal area of China:effects of land-sea boundary and station coordinate[J]. Journal of Geodynamics, 2013, 68:29-36. [42] 王继刚,周江存.沿海和岛屿重力海潮负荷改正模型——以马祖岛为例[J].大地测量与地球动力学, 2020, 40(8):794-798. WANG Jigang, ZHOU Jiangcun. Correction model of ocean tide loading on gravity over coastal area and islands:a case study of Matzu Island[J]. Journal of Geodesy and Geodynamics, 2020, 40(8):794-798. [43] LEFōVRE F, LYARD F H, LE PROVOST C, et al. FES99:a global tide finite element solution assimilating tide gauge and altimetric information[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9):1345-1356. [44] BOY J P, GEGOUT P, HINDERER J. Reduction of surface gravity data from global atmospheric pressure loading[J]. Geophysical Journal International, 2002, 149(2):534-545. [45] BOY J P, HINDERER J. Study of the seasonal gravity signal in superconducting gravimeter data[J]. Journal of Geodynamics, 2006, 41(1-3):227-233. [46] NEUMEYER J, BARTHELMES F, DIERKS O, et al. Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models[J]. Journal of Geodesy, 2006, 79(10):573-585. [47] 周江存,孙和平,徐建桥.用地表和空间重力测量验证全球水储量变化模型[J].科学通报, 2009, 54(9):1282-1289. ZHOU Jiangcun, SUN Heping, XU Jianqiao. Validating global hydrological models by ground and space gravimetry[J]. Chinese Science Bulletin, 2009, 54(9):1282-1289. [48] ZHOU Jiangcun, SUN Heping, XU Jianqian, et al. Estimation of local water storage change by space-and ground-based gravimetry[J]. Journal of Applied Geophysics, 2016, 131:23-28. [49] 周江存,徐建桥,孙和平.中国大陆精密重力潮汐改正模型[J].地球物理学报, 2009, 52(6):1474-1482. ZHOU Jiangcun, XU Jianqiao, SUN Heping. Accurate correction models for tidal gravity in Chinese continent[J]. Chinese Journal of Geophysics, 2009, 52(6):1474-1482. [50] WILLIAMS S D P, PENNA N T. Non-tidal ocean loading effects on geodetic GPS heights[J]. Geophysical Research Letters, 2011, 38(9):L09314. [51] FU Yuning, FREYMUELLER J T, VAN DAM T. The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions[J]. Journal of Geodesy, 2012, 86(6):409-421. [52] SHE Yawen, FU Guangyu, LIU Tai. Effect of earth models on coulomb stress change caused by surface load[J]. Pure and Applied Geophysics, 2021, 178(4):1235-1251. DOI:10.1007/s00024-021-02706-1. [53] XUE Liang, FU Yuning, MARTENS H R. Seasonal hydrological loading in the Great Lakes region detected by GNSS:a comparison with hydrological models[J]. Geophysical Journal International, 2021, 226(2):1174-1186. [54] 孙和平, DUCARME B,许厚泽,等.基于全球超导重力仪观测研究海潮和固体潮模型的适定性[J].中国科学D辑:地球科学, 2005, 35(7):649-657. SUN Heping, DUCARME B, XU Houze, et al. Adaptability of the ocean and Earth tidal models based on global observations of the superconducting gravimeters[J]. Science in China Series D:Earth Science, 2005, 35(7):649-657. [55] 孙和平,许厚泽,周江存,等.武汉超导重力仪观测最新结果和海潮模型研究[J].地球物理学报, 2005, 48(2):299-307. SUN Heping, XU Houze, ZHOU Jiangcun, et al. Latest observation results from superconducting gravimeter at station Wuhan and investigation of the ocean tide models[J]. Chinese Journal of Geophysics, 2005, 48(2):299-307. [56] SUN H P, JENTZSCH G, XU J Q, et al. Earth's free core nutation determined using C032 superconducting gravimeter at station Wuhan/China[J]. Journal of Geodynamics, 2004, 38(3-5):451-460. [57] 李鹏,李振洪,冯万鹏,等.海潮负荷对沿海地区宽幅InSAR形变监测的影响[J].地球物理学报, 2019, 62(8):2845-2857. LI Peng, LI Zhenhong, FENG Wanpeng, et al. Impacts of ocean tidal loading on coastal deformation mapping with wide-swath InSAR observations[J]. Chinese Journal of Geophysics, 2019, 62(8):2845-2857. [58] YUAN L G, DING X L, SUN H P, et al. Determination of ocean tide loading displacements in Hong Kong using GPS technique[J]. Science China Earth Sciences, 2010, 53(7):993-1007. [59] LIU Z G, YUAN L G, HAN K Y, et al. Comparison of GPS-derived ocean tide loading displacements with models in New Zealand[J]. New Zealand Journal of Marine and Freshwater Research, 2021. DOI:10.1080/00288330.2021.1993276. [60] WANG H S, XIANG L W, JIA L L, et al. Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0[J]. Computers&Geosciences, 2012, 49:190-199. [61] MARTENS H R, RIVERA L, SIMONS M, et al. The sensitivity of surface mass loading displacement response to perturbations in the elastic structure of the crust and mantle[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(5):3911-3938. [62] NIBAUER T M. Correction gravity mearsurements for the effect of local air pressure[J]. Journal of Geophysics, 1988, 53:155-162. [63] MERRIAM J B. Atmospheric pressure and gravity[J]. Geophysical Journal International, 1992, 109(3):488-500. [64] 孙和平.大气重力格林函数[J].科学通报, 1997, 42(15):1640-1646. SUN Heping. Atmospheric gravity Green's functions[J]. Chinese Science Bulletin, 1997, 42(15):1640-1646. [65] CHENG A H D. Poroelasticity[M]. Switzerland:Springer, 2016. [66] LEE Z Y. Coupled problem of thermoelasticity for multilayered spheres with time-dependent boundary conditions[J]. Journal of Marine Science and Technology, 2004, 12(2):93-101. [67] FANG Ming, DONG Danan, HAGER B H. Displacements due to surface temperature variation on a uniform elastic sphere with its Centre of mass stationary[J]. Geophysical Journal International, 2014, 196(1):194-203. [68] ZHOU Jiangcun, PAN Ernian, BEVIS M. Deformation due to surface temperature variation on a spherically layered, transversely isotropic and self-gravitating Earth[J]. Geophysical Journal International, 2021, 225(3):1672-1688. [69] OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154. [70] BEN-MENAHEM A, SINGH S J, SOLOMON F. Static deformation of a spherical Earth model by internal dislocations[J]. Bulletin of the Seismological Society of America, 1969, 59(2):813-853. [71] BEN-MENAHEM A, SINGH S J, SOLOMON F. Deformation of a homogeneous Earth model by finite dislocations[J]. Reviews of Geophysics, 1970, 8(3):591-632. [72] SMYLIE D E, MANSINHA L. The elasticity theory of dislocations in real Earth models and changes in the rotation of the earth[J]. Geophysical Journal International, 1971, 23(3):329-354. [73] SUN W K. Potential and gravity changes raised by dislocations in spherically symmetric Earth models[D]. Tokyo:The University of Tokyo, 1992. [74] SUN W K, OKUBO S. Surface potential and gravity changes due to internal dislocations in a spherical Earth-I. Theory for a point dislocation[J]. Geophysical Journal International, 1993, 114(3):569-592. [75] SUN W K, OKUBO S. Surface potential and gravity changes due to internal dislocations in a spherical Earth-II. Application to a finite fault[J]. Geophysical Journal International, 1998, 132(1):79-88. [76] 孙文科.地震位错理论[M].北京:科学出版社, 2012. SUN Wenke. Theory on seismic dislocation[M]. Beijing:Science Press, 2012. [77] DONG J, SUN W K, ZHOU X, et al. Effects of Earth's layered structure, gravity and curvature on coseismic deformation[J]. Geophysical Journal International, 2014, 199(3):1442-1451. [78] DONG J, SUN W K, ZHOU X, et al. An analytical approach to estimate curvature effect of coseismic deformations[J]. Geophysical Journal International, 2016, 206(2):1327-1339. [79] OKUBO S. Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric earth[J]. Geophysical Journal International, 1993, 115(3):921-928. [80] OKUBO S. Asymptotic solutions to the static deformation of the Earth-I. Spheroidal mode[J]. Geophysical Journal International, 1988, 92(1):39-51. [81] SUN W K. Asymptotic theory for calculating deformations caused by dislocations buried in a spherical Earth:geoid change[J]. Journal of Geodesy, 2003, 77(7-8):381-387. [82] SUN W K. Short Note:asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth-gravity change[J]. Journal of Geodesy, 2004, 78(1-2):76-81. [83] SUN W K. Asymptotic solution of static displacements caused by dislocations in a spherically symmetric Earth[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B5):B05402. [84] SUN W K, DONG J. Relation of dislocation Love numbers and conventional Love numbers and corresponding Green's functions for a surface rupture in a spherical Earth model[J]. Geophysical Journal International, 2013, 193(2):717-733. [85] TAKAGI Y, OKUBO S. Internal deformation caused by a point dislocation in a uniform elastic sphere[J]. Geophysical Journal International, 2017, 208(2):973-991. [86] TANG H, SUN W K. Asymptotic expressions for changes in the surface co-seismic strain on a homogeneous sphere[J]. Geophysical Journal International, 2017, 209(1):202-225. [87] ZHOU J, PAN E, BEVIS M. A point dislocation in a layered, transversely isotropic and self-gravitating Earth-Part Ⅱ:accurate Green's functions[J]. Geophysical Journal International, 2019, 219(3):1717-1728. [88] TANG H, SUN W K. Analytical equations for an infinite series involving loworder associated Legendre functions in geoscience[J]. Journal of Geodesy, 2021, 95(7):86. [89] ZHOU J, PAN E, BEVIS M. A point dislocation in a layered, transversely isotropic and self-gravitating Earth-Part III:internal deformation[J]. Geophysical Journal International, 2020, 223(1):420-443. [90] ZHOU J C, PAN E, BEVIS M. A point dislocation in a layered, transversely isotropic and self-gravitating Earth. Part IV:exact asymptotic solutions of dislocation Love numbers for the special case of isotropy[J]. Geophysical Journal International, 2021, 225(1):664-683. [91] FU G Y, SUN W K. Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (Mw 9.1)[J]. Earth, Planets and Space, 2006, 58(2):149-152. [92] ZHOU J C, SUN W K, SUN H P, et al. Reformulation of co-seismic polar motion excitation and low degree gravity changes:applied to the 2011 Tohoku-Oki earthquake (Mw9.0)[J]. Journal of Geodynamics, 2013, 63:20-26. [93] ZHOU J C, SUN W K, SUN H P, et al. Co-seismic change of length of day based on the point dislocation theory for a SNREI Earth[J]. Journal of Geodynamics, 2014, 79:18-22. [94] ZHOU J C, SUN W K, DONG J. A correction to the article"Geo-center movement caused by huge earthquakes"by Wenke Sun and Jie Dong[J]. Journal of Geodynamics, 2015, 87:67-73. [95] ZHOU J C, SUN W K, JIN S G, et al. Rotation change in the orientation of the centre-of-figure frame caused by large earthquakes[J]. Geophysical Journal International, 2016, 206(2):999-1008. [96] XU C Y, SUN W K. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory[J]. Geophysical Journal International, 2014, 199(3):1655-1661. [97] 周江存,孙和平,徐建桥,等.重力位能同震变化及其构造意义——以青藏高原地区为例[J].地球物理学报, 2017, 60(6):2493-2499. ZHOU Jiangcun, SUN Heping, XU Jianqiao, et al. Co-seismic change of gravitational potential energy and its tectonic implications:a case study of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2017, 60(6):2493-2499. [98] XU C Y, CHAO B F. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(5):4053-4063. [99] XU C Y. Coseismic changes in the kinetic rotational energy of the Earth from 1976 to 2019[J]. Geophysical Journal International, 2021, 224(2):1127-1132. [100] YU C P, VAVRYČUK V, ADAMOVÁ P, et al. Moment tensors of induced microearthquakes in the Geysers geothermal reservoir from broadband seismic recordings:implications for faulting regime, stress tensor, and fluid pressure[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(10):8748-8766. [101] CHEN S Y, LIU P X, GUO Y S, et al. Co-seismic response of bedrock temperature to the Ms6.3 Kangding earthquake on 22 November 2014 in Sichuan, China[J]. Pure and Applied Geophysics, 2019, 176(1):97-117. [102] JAHR T, BUNTEBARTH G, SAUTER M. Earth tides as revealed by micro-temperature measurements in the subsurface[J]. Journal of Geodynamics, 2020, 136:101718. [103] 唐河,孙文科.黏弹地球地震变形理论研究进展和展望[J].地球与行星物理论评, 2021, 52(1):11-26. TANG He, SUN Wenke. Progress and prospect of deformation theory in the viscoelastic Earth[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(1):11-26. [104] GÓMEZ D D, BEVIS M, PAN E, et al. The influence of gravity on the displacement field produced by fault slip[J]. Geophysical Research Letters, 2017, 44(18):9321-9329. [105] WANG R J. The dislocation theory:a consistent way for including the gravity effect in (visco) elastic plane-earth models[J]. Geophysical Journal International, 2005, 161(1):191-196. |
[1] | 张烁, 陈丽平, 李铁映, 鄢咏折, 邓湘金, 顾征, 郑燕红, 马友青, 亓晨, 刘少创. 嫦娥五号探测器月面采样封装任务的定位精度[J]. 测绘学报, 2022, 51(5): 631-639. |
[2] | 唐晓芳, 詹总谦, 丁久婕, 刘佳辉, 熊子柔. 顾及超像素光谱特征的无人机影像自动模糊聚类分割法[J]. 测绘学报, 2022, 51(5): 677-690. |
[3] | 周宝定, 张文香, 黄金彩, 李清泉. 基于众源数据的室内外一体化行人路网构建[J]. 测绘学报, 2022, 51(5): 718-728. |
[4] | 王晨捷, 罗斌, 李成源, 王伟, 尹露, 赵青. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776. |
[5] | 王乐洋, 高华, 冯光财. 利用InSAR和GPS数据分析台湾西南两次Mw>6地震的触发关系及应力影响[J]. 测绘学报, 2019, 48(10): 1244-1253. |
[6] | 张恒璟, 崔东东, 程鹏飞. CORS站高程非线性速度场及方差波动模型构建方法[J]. 测绘学报, 2019, 48(9): 1096-1106. |
[7] | 赵建虎, 梁文彪. 海底控制网测量和解算中的几个关键问题[J]. 测绘学报, 2019, 48(9): 1197-1202. |
[8] | 陈张雷, 李崇辉, 郑勇, 陈冰, 何东汉. 天文定位中几何精度衰减因子最小值分析[J]. 测绘学报, 2019, 48(7): 879-888. |
[9] | 姚朝龙, 罗志才, 胡月明, 王长委, 张瑞, 李金明. 利用GPS垂向位移监测西南地区干旱事件[J]. 测绘学报, 2019, 48(5): 547-554. |
[10] | 鲁铁定, 吴光明, 周世健. 病态不确定性平差模型的岭估计算法[J]. 测绘学报, 2019, 48(4): 403-411. |
[11] | 贺礼家, 冯光财, 冯志雄, 高华. 哨兵-2号光学影像地表形变监测:以2016年MW7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3): 339-351. |
[12] | 阮仁桂, 魏子卿, 贾小林. 一种基于星间单差模糊度固定的载波伪距生成方法[J]. 测绘学报, 2018, 47(12): 1591-1598. |
[13] | 李烁, 王慧, 耿则勋, 于翔舟, 卢兰鑫. 双范数混合约束的遥感影像亮度不均变分校正[J]. 测绘学报, 2018, 47(12): 1621-1629. |
[14] | 余建胜, 赵斌, 谭凯, 王东振. 汶川地震震后GNSS形变分析[J]. 测绘学报, 2018, 47(9): 1196-1206. |
[15] | 姜尚洁, 罗斌, 贺鹏, 杨国鹏, 顾亚平, 刘军, 张云, 张良培. 利用无人机多源影像检测车辆速度[J]. 测绘学报, 2018, 47(9): 1228-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||