[1] VAN REES E. The first multispectral airborne LiDAR sensor[J]. GeoInformatics, 2015, 18(1):10. [2] TEO T A, WU H M. Analysis of land cover classification using multi-wavelength LiDAR system[J]. Applied Sciences, 2017, 7(7):663. [3] 杜建丽, 陈动, 张振鑫, 等. 建筑点云几何模型重建方法研究进展[J]. 遥感学报, 2019, 23(3):374-391. DU Jianli, CHEN Dong, ZHANG Zhenxin, et al. Research progress of building reconstruction via airborne point clouds[J]. Journal of Remote Sensing, 2019, 23(3):374-391. [4] FERNANDEZ-DIAZ J, CARTER W, GLENNIE C, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR[J]. Remote Sensing, 2016, 8(11):936. [5] BAKULA K,KUPIDURA P, JELOWICKI L. Testing of land cover classification from multispectral airborne laser scanning data[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:161-169. [6] HOPKINSON C, CHASMER L, GYNAN C, et al. Multisensor and multispectral LiDAR characterization and classification of a forest environment[J]. Canadian Journal of Remote Sensing, 2016, 42(5):501-520. [7] MORSY S, SHAKER A,EI-RABBANY A. Multispectral LiDAR data for land coverclassification of urban areas[J]. Sensors, 2017, 17(5):958. [8] MILLER C I, THOMAS J J, KIM A M, et al. Application of image classification techniques to multispectral LiDAR point cloud data[C]//Proceedings of 2016 SPIE 9832, Laser Radar Technology and Applications XXI. Baltimore, MD, USA:SPIE, 2016:98320. [9] PAN Suoyan, GUAN Haiyan, YU Yongtao, et al. A comparative land-cover classification feature study of learning algorithms:DBM, PCA, and RF using multispectral LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4):1314-1326. [10] WANG Chisheng, SHU Qiqi, WANG Xinyu, et al. A random forest classifier based on pixel comparison features for urban LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:75-86. [11] 曹爽, 潘锁艳, 管海燕. 机载多光谱LiDAR的随机森林地物分类[J]. 测绘通报, 2019(11):79-84. CAO Shuang, PAN Suoyan, GUAN Haiyan. Random forest-based land-use classification using multispectral LiDAR data[J]. Bulletin of Surveying and Mapping, 2019(11):79-84. [12] JIA Sen, ZHAN Zhangwei, ZHANG Meng, et al. Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1437-1452. [13] WANG C K,TSENG Y, CHU H J. Airborne dual-wavelength LiDAR data for classifying land cover[J]. Remote Sensing,2013,6(1):700-715. [14] HUO L Z, SILVA C A, KLAUBERG C, et al. Supervised spatial classification of multispectral LiDAR data in urban areas[J]. PLoS One,2018,13(10):e0206185. [15] 潘锁艳,管海燕.机载多光谱LiDAR数据的地物分类方法[J].测绘学报,2018,47(2):198-207.DOI:10.11947/j.AGCS.2018.20170512. PAN Suoyan, GUAN Haiyan. Object classification using airborne multispectral LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):198-207.DOI:10.11947/j.AGCS.2018.20170512. [16] PAN Suoyan, GUAN Haiyan, CHEN Yating, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:241-254. [17] YU Yongtao, GUAN Haiyan, LI Dilong, et al. A hybrid capsule network for land cover classification using multispectral LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1263-1267. [18] MATIKAINEN L, KARILA K, HYYPPÄ J, et al. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:298-313. [19] LEIGH H W, MAGRUDER L A. Using dual-wavelength, full-waveform airborne LiDAR for surface classification and vegetation characterization[J]. Journal of Applied Remote Sensing, 2016, 10(4):045001. [20] ZOU X L, ZHAO G H, JONATHAN L, et al. 3D land cover classification based on multispectral LiDAR point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:741-747. [21] MORSY S, SHAKER A, EI-RABBANY A, et al. Airborne multispectral LiDAR data for land-cover classification and land/water mapping using different spectral indexes[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, Ⅲ-3:217-224. [22] WICHMANN V, BREMER M, LINDENBERGER J, et al. Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, Ⅱ-3/W5(1):113-119. [23] GANDI N M I. Classification airborne LiDAR point cloud data[J]. International Journal for Modern Trends in Science and Technology, 2021, 7(1):36-39. [24] JÄRVINEN A. Airborne laser scanning data comparison based on roof features[D]. Helsinki:Aalto University, 2019. [25] MORSY S, SHAKER A, EI-RABBANY A. Using multispectral airborne LiDAR data for land/water discrimination:a case study at Lake Ontario, Canada[J]. Applied Sciences, 2018, 8(3):349. [26] ARTTU S. TerraScan user guide[EB/OL].(2021-07-15)[2022-05-08]. https://www.terrasolid.com/guides/tscan/index.html. [27] DAI Wenxia, YANG Bisheng, DONG Zhen, et al. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:400-411. [28] YU Xiaowei, HYYPPÄ J, LITKEY P, et al. Single-sensor solution to tree species classification using multispectral airborne laser scanning[J]. Remote Sensing, 2017, 9(2):108. [29] KUKKONEN M, MALTAMO M, KORHONEN L, et al. Comparison of multispectral airborne laser scanning and stereo matching of aerial images as a single sensor solution to forest inventories by tree species[J]. Remote Sensing of Environment, 2019, 231:111208. [30] KUKKONEN M, MALTAMO M, KORHONEN L, et al. Multispectral airborne LiDAR data in the prediction of boreal tree species composition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):3462-3471. [31] AMIRI N, HEURICH M, KRZYSTEK P, et al. Feature relevance assessment of multispectral airborne LiDAR data for tree species classification[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-3:31-34. [32] 赵沛冉, 管海燕, 李迪龙, 等. 利用样本生成方法进行机载多光谱LiDAR数据深度学习分类[J]. 测绘通报, 2021(12):16-21. ZHAO Peiran, GUAN Haiyan, LI Dilong, et al. Deep learning classification of airborne multispectral LiDAR data using sample generation method[J]. Bulletin of Surveying and Mapping, 2021(12):16-21. [33] 景庄伟. 基于深度学习的多光谱LiDAR点云数据地物分类研究[D]. 南京:南京信息工程大学, 2021. JING Zhuangwei. Research on classification of ground objects based on multi-spectral LiDAR point cloud data based on deep learning[D]. Nanjing:Nanjing University of Information Science & Technology, 2021. [34] WANG Qingwang, GU Yanfeng. A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1568-1586. [35] SUN Jia, SHI Shuo, CHEN Biwu, et al. Combined application of 3D spectral features from multispectral LiDAR for classification[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX, USA:IEEE, 2017:5264-5267. [36] EKHTARI N,GLENNIE C,FERNANDEZ-DIAZ J C.Classification of multispectral LiDAR point clouds[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium.Fort Worth,TX, USA:IEEE, 2017:2756-2759. [37] EKHTARI N,GLENNIE C,FERNANDEZ-DIAZ J C.Classification of airborne multispectral LiDAR point clouds for land cover mapping[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(6):2068-2078. [38] CHEN Biwu, SHI Shuo, GONG Wei, et al. Multispectral LiDAR point cloud classification:a two-step approach[J]. Remote Sensing, 2017, 9(4):373. [39] 袁鹏飞,黄荣刚,胡平波,等. 基于多光谱LiDAR数据的道路中心线提取[J].地球信息科学学报,2018, 20(4):452-461. YUAN Pengfei,HUANG Ronggang,HU Pingbo, et al.Road axis extraction method based on multi-spectral LiDAR data[J].Journal of Geo-information Science,2018,20(4):452-461. [40] CHATZIS S P,VARVARIGOU T A.A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J].IEEE Transactions on Fuzzy Systems,2008,16(5):1351-1361. [41] 李玉,徐艳,赵雪梅,等.利用高斯混合模型的多光谱图像模糊聚类分割[J].光学精密工程,2017,25(2):509-518. LI Yu,XU Yan,ZHAO Xuemei,et al.Fuzzy clustering segmentation of multispectral images using Gaussian mixture model[J].Optical precision engineering,2017,25(2):509-518. [42] 杨俊,李娜,李迟迟,等.基于高斯混合模型和马尔科夫随机场的脑MR图像分割[J].解剖学研究, 2018, 40(5):59-63. YANG Jun, LI Na,LI Chichi,et al. Brain MR image segmentation based on Gaussian mixture model and Markov random field[J].Anatomical study,2018,40(5):59-63. [43] SHAPOVALOV R, VELIZHEV A, BARINOVA O. Non-associative Markov networks for 3D point cloud classification[C]//Proceedings of 2010 European Conference on Computer Vision.Zurich, Switzerland:Springer,2010:500-515. [44] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Classification of urban LiDAR data using conditional random field and random forests[C]//Proceedings of 2013 Joint Urban Remote Sensing Event. Sao Paulo, Brazil:IEEE, 2013:139-142. [45] NIEMEYER J,ROTTENSTEINER F,SOERGEL U.Conditional random fields for LiDAR point cloud classification in complex urban areas[J].ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,2012,1(3):263-268. [46] NIEMEYER J, ROTTENSTEINER F, SOERGEL U, et al. Hierarchical higher order CRF for the classification of airborne LiDAR point clouds in urban areas[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2016,XLI-B3:655-662. [47] 王丽英,王圣,李玉.强度体元基元下的机载LiDAR 3D滤波[J].地球信息科学学报,2019,21(12):1945-1954. WANG Liying, WANG Sheng, LI Yu. Airborne LiDAR 3D filtering under intensity voxels[J].Journal of Earth Information Sciences,2019,21(12):1945-1954. [48] 袁夏,赵春霞,张浩峰,等.基于点云数据的自然地形分类算法[J].南京理工大学学报(自然科学版), 2010,34(2):222-226, 237. YUAN Xia, ZHAO Chunxia, ZHANG Haofeng, et al. Nature terrain classification using point cloud data[J].Journal of Nanjing University of Science and Technology (Natural Science),2010,34(2):222-226, 237. [49] LI Chunzhong,XU Zongben.Structure identification-based clustering according to density consistency[J].Mathematical Problems in Engineering,2011,1:890901. [50] ICHIHASHI H,MIYAGISHI K,HONDA K.Fuzzy C-means clustering with regularization by K-L information[C]//Proceedings of the 10th IEEE International Conference on Fuzzy Systems. Melbourne, Australia:IEEE, 2001:924-927. |