[1] 刘慧敏, 胡文柯, 唐建波, 等. 顾及功能语义特征的建筑物空间分布模式识别方法[J]. 测绘学报, 2020, 49(5): 622-631. DOI: 10.11947/j.AGCS.2020.20190222. LIU Huimin, HU Wenke, TANG Jianbo, et al. A method for recognizing building clusters by considering functional features of buildings[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 622-631.DOI: 10.11947/j.AGCS.2020.20190222. [2] ZHANG Xiuyuan, DU Shihong, WANG Yichen. Semantic classification of heterogeneous urban scenes using intrascene feature similarity and interscene semantic dependency[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2005-2014. [3] DU Shihong, ZHANG Fangli, ZHANG Xiuyuan. Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 107-119. [4] MAO Bo, HARRIE L, BAN Yifang. Detection and typification of linear structures for dynamic visualization of 3D city models[J]. Computers, Environment and Urban Systems, 2012, 36(3): 233-244. [5] ZHANG Liqiang, DENG Hao, CHEN Dong, et al. A spatial cognition-based urban building clustering approach and its applications[J]. International Journal of Geographical Information Science, 2013, 27(4): 721-740. [6] RUAS A, HOLZAPFEL F. Automatic characterisation of building alignments by means of expert knowledge[C]//Proceedings of the 21st International Cartographic Conference (ICC). Miami, FL, USA: ICC, 2003: 1604-1616. [7] STEINIGER S. Enabling pattern-aware automated map generalization[D]. Zurich:University of Zurich,2007. [8] ZHANG Xiang, STOTER J, AI Tinghua, et al. Automated evaluation of building alignments in generalized maps[J]. International Journal of Geographical Information Science, 2013, 27(8): 1550-1571. [9] RENARD J, DUCHÊNE C. Urban structure generalization in multi-agent process by use of reactional agents[J]. Transactions in GIS, 2014, 18(2): 201-218. [10] ANDERS K H,SESTER M. A hierarchical graph-clustering approach to find groups of objects [C]//Proceedings of the 5th Workshop on Progress in Automated Map Generalization.Paris,France:[s.n.], 2003. [11] REGNAULD N. Contextual building typification in automated map generalization[J]. Algorithmica, 2001, 30(2): 312-333. [12] 艾廷华, 郭仁忠. 基于格式塔识别原则挖掘空间分布模式[J]. 测绘学报, 2007, 36(3): 302-308. AI Tinghua, GUO Renzhong. Polygon cluster pattern mining based on gestalt principles[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 302-308. [13] YAN Haowen, WEIBEL R, YANG Bisheng. A multi-parameter approach to automated building grouping and generalization[J]. GeoInformatica, 2008, 12(1): 73-89. [14] LI Z, YAN H, AI T, et al. Automated building generalization based on urban morphology and Gestalt theory[J]. International Journal of Geographical Information Science, 2004, 18(5): 513-534. [15] ALLOUCHE M K, MOULIN B. Amalgamation in cartographic generalization using Kohonen's feature nets[J]. International Journal of Geographical Information Science, 2005, 19(8-9): 899-914. [16] WANG Yuebin, ZHANG Liqiang, MATHIOPOULOS P T, et al. A Gestalt rules and graph-cut-based simplification framework for urban building models[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 247-258. [17] 程博艳, 刘强, 李小文. 一种建筑物群智能聚类法[J]. 测绘学报, 2013, 42(2): 290-294, 303. CHENG Boyan, LIU Qiang, LI Xiaowen. Intelligent building grouping using a self-organizing map[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 290-294, 303. [18] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph deep learning approach for urban building grouping[J]. Geocarto International, 2022, 37(10):2944-2966. [19] RAINSFORD D,MACKANESS W. Template matching in support of generalisation of rural buildings[M]//Advancesin Spatial Data Handling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 137-151. [20] YANG W. Identify building patterns[C]//Proceedings of 2011 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Göttingen, Germany: Copernicus GmbH, 2011, 391-398. [21] 巩现勇, 武芳. 基于图匹配的城市建筑群典型字母型分布的识别[J]. 武汉大学学报(信息科学版), 2018, 43(1): 159-166. GONG Xianyong, WU Fang. A graph match approach to typical letter-like pattern recognition in urban building groups[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 159-166. [22] ANDERS K H.Grid typification[C]//Proceedings of the 12th International Symposium on Spatial Data Handling, Berlin: Springer, 2006: 633-642. [23] WANG Xiao, BURGHARDT D. A mesh-based typification method for building groups with grid patterns[J]. ISPRS International Journal of Geo-Information, 2019, 8(4): 168. [24] ZHANG Xiang, AI Tinghua, STOTER J, et al. Building pattern recognition in topographic data: examples on collinear and curvilinear alignments[J]. GeoInformatica, 2013, 17(1): 1-33. [25] WANG Xiao, BURGHARDT D. A typification method for linear building groups based on stroke simplification[J]. Geocarto International, 2021, 36(15): 1732-1751. [26] 巩现勇, 武芳, 钱海忠, 等. 建筑群多连通直线模式的参数识别方法[J]. 武汉大学学报(信息科学版), 2014, 39(3): 335-339. GONG Xianyong, WU Fang, QIAN Haizhong, et al. The parameter discrimination approach to multi-connected linear pattern recognition in building groups[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 335-339. [27] 巩现勇, 武芳. 城市建筑群网格模式的图论识别方法[J]. 测绘学报, 2014, 43(9): 960-968. GONG Xianyong, WU Fang. The graph theory approach to grid pattern recognition in urban building groups[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 960-968. [28] DU Shihong, SHU Mi, FENG C C. Representation and discovery of building patterns: a three-level relational approach[J]. International Journal of Geographical Information Science, 2016, 30(6): 1161-1186. [29] 郭庆胜, 魏智威, 王勇, 等. 特征分类与邻近图相结合的建筑物群空间分布特征提取方法[J]. 测绘学报, 2017, 46(5): 631-638.DOI: 10.11947/j.AGCS.2017.20160374. GUO Qingsheng, WEI Zhiwei, WANG Yong, et al. The method of extracting spatial distribution characteristics of buildings combined with feature classification and proximity graph[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 631-638.DOI: 10.11947/j.AGCS.2017.20160374. [30] WEI Zhiwei, GUO Qingsheng, WANG Lin, et al. On the spatial distribution of buildings for map generalization[J]. Cartography and Geographic Information Science, 2018, 45(6): 539-555. [31] HE Xianjin, ZHANG Xinchang, XIN Qinchuan. Recognition of building group patterns in topographic maps based on graph partitioning and random forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136: 26-40. [32] ZHAO Rong, AI Tinghua, YU Wenhao, et al. Recognition of building group patterns using graph convolutional network[J]. Cartography and Geographic Information Science, 2020, 47(5): 400-417. [33] WANG Chun, LAI Zhongyuan. Shape decomposition and classification by searching optimal part pruning sequence[J]. Pattern Recognition, 2016, 54: 206-217. [34] DASH K S, PUHAN N B, PANDA G. Unconstrained handwritten digit recognition using perceptual shape primitives[J]. Pattern Analysis and Applications, 2018, 21(2): 413-436. [35] HU Xuke, FAN Hongchao, NOSKOV A. Roof model recommendation for complex buildings based on combination rules and symmetry features in footprints[J]. International Journal of Digital Earth, 2018, 11(10): 1039-1063. [36] DU Shihong, SHU Mi, WANG Qiao. Modelling relational contexts in GEOBIA framework for improving urban land-cover mapping[J]. GIScience & Remote Sensing, 2019, 56(2): 184-209. [37] JIANG, JIANG, KWAN, et al. Study of indoor ventilation based on large-scale DNS by a domain decomposition method[J]. Symmetry, 2019, 11(11): 1416. [38] LIU Yuangang, GUO Qingsheng, SUN Yageng, et al. A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm[J]. PLoS One, 2014, 9(12): e113953. [39] 艾廷华, 郭仁忠. 支持地图综合的面状目标约束Delaunay三角网剖分[J]. 武汉测绘科技大学学报, 2000,25(1): 35-41. AI Tinghua, GUO Renzhong. A constrained delaunay partitioning of areal objects to support map generalization[J]. Journal of Wuhan Technical University of Surveying and Mapping (Wtusm), 2000, 25(1): 35-41. |