[1] 刘适, 黄晓峰, 乔旭君. 火星探测进入、下降、着陆过程通信方案[J]. 航天器工程, 2015, 24(4): 94-101. LIU Shi, HUANG Xiaofeng, QIAO Xujun. Telecommunication system scheme for Mars probe during EDL[J]. Spacecraft Engineering, 2015, 24(4): 94-101. [2] 宋敏, 袁运斌. 火星探测巡航段自主导航方法研究[J]. 武汉大学学报(信息科学版), 2016, 41(7): 952-957. SONG Min, YUAN Yunbin. Research on autonomous navigation method for the cruise phase of Mars exploration[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 952-957. [3] EDWARDS C D. Relay communications for Mars exploration[J]. International Journal of Satellite Communications and Networking, 2007, 25(2): 111-145. [4] WANG Jia, ZHANG Yu, DI Kaichang, et al. Localization of the Chang'e-5 lander using radio-tracking and image-based methods[J]. Remote Sensing, 2021, 13(4): 590. [5] WAN Wenhui, YU Tianyi, DI Kaichang, et al. Visual localization of the Tianwen-1 lander using orbital, descent and rover images[J]. Remote Sensing, 2021, 13(17): 3439. [6] LI Rongxing, ARVIDSON R E, DI Kaichang, et al. Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars[J]. Journal of Geophysical Research: Planets, 2007, 112(E2): 1074-1086. [7] 邸凯昌, 岳宗玉, 刘召芹. 基于地面图像和卫星图像集成的火星车定位新方法[J]. 航天器工程, 2010, 19(4): 8-16. DI Kaichang, YUE Zongyu, LIU Zhaoqin. A new approach to Mars rover localization based on integration of ground and orbital images[J]. Spacecraft Engineering, 2010, 19(4): 8-16. [8] 耿迅. 火星形貌摄影测量技术研究[J]. 测绘学报, 2015, 44(8): 944. DOI: 10.11947/j.AGCS.2015.20150073. GENG Xun. Research on photogrammetric processing for Mars topographic mapping[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8): 944. DOI: 10.11947/j.AGCS.2015.20150073. [9] LIU Jianjun, LI Chunlai, ZHANG Rongqiao, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2022, 6(1): 65-71. [10] 郭丽, 黄逸丹, 李金岭, 等.基于同波束VLBI测量对嫦娥五号卫星交汇对接的相对实时定位[J].测绘学报,2023,52(3):375-382. DOI: 10.11947/j.AGCS.2023.20210351. GUO Li, HUANG Yidan, LI Jinling, et al. Real-time relative positioning of Chang'e-5 satellite in rendezvous and docking with the same-beam VLBI differential observations[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 375-382. DOI: 10.11947/j.AGCS.2023.20210351. [11] 周欢, 童锋贤, 李海涛, 等. 深空探测器同波束相位参考成图相对定位方法[J]. 测绘学报, 2015, 44(6): 634-640. DOI: 10.11947/j.AGCS.2015.20140240. ZHOU Huan, TONG Fengxian, LI Haitao, et al. Relative position determination between deep-space probes based on same beam phase-referencing imaging technique[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 634-640. DOI: 10.11947/j.AGCS.2015.20140240. [12] 陈明, 刘庆会, 陈冠磊, 等. 同波束干涉测量差分相位计算与DOR时延精度验证[J]. 测绘学报, 2013, 42(6): 817-823. CHEN Ming, LIU Qinghui, CHEN Guanlei, et al. Calculation of differential phases in same-beam VLBI and accuracy verification of DOR delay[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 817-823. [13] 黄岸毅, 谢鑫, 张智斌, 等. 同波束干涉测量在月面相对定位中的应用[J]. 测绘学报, 2015, 44(9): 973-979. DOI: 10.11947/j.AGCS.2015.20140142. HUANG Anyi, XIE Xin, ZHANG Zhibin, et al. Application of the same beam interferometry measurement in relative position determination on lunar surface[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 973-979. DOI: 10.11947/j.AGCS.2015.20140142. [14] 高云鹏, 任天鹏, 杜兰, 等. CE-5器间分离的同波束干涉测量的准实时监测法[J]. 测绘学报, 2019, 48(10): 1216-1224.DOI: 10.11947/j.AGCS.2019.20180351. GAO Yunpeng, REN Tianpeng, DU Lan, et al. Quasi real-time monitoring of CE-5 inter-device separation based on same-beam interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1216-1224.DOI: 10.11947/j.AGCS.2019.20180351. [15] 詹银虎. 测日天文导航理论及技术研究[J]. 测绘学报, 2017, 46(2): 267.DOI: 10.11947/j.AGCS.2017.20160542. ZHAN Yinhu. Theory and technology research on celestial navigation based on the Sun[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 267. DOI: 10.11947/j.AGCS.2017.20160542. [16] 段建锋, 张宇, 孔静, 等. 嫦娥五号定轨定位策略设计与精度评估[J]. 中国科学: 物理学力学天文学, 2021, 51(11): 57-65. DUAN Jianfeng, ZHANG Yu, KONG Jing, et al. Orbit determination, positioning strategy design, and accuracy evaluation of Chang'e-5[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(11): 57-65. [17] 曹建峰, 张宇, 胡松杰, 等. 嫦娥三号着陆器精确定位与精度分析[J]. 武汉大学学报(信息科学版), 2016, 41(2): 274-278. CAO Jianfeng, ZHANG Yu, HU Songjie, et al. An analysis of precise positioning and accuracy of the CE-3 lunar lander soft landing[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 274-278. [18] 韩松涛, 陈明, 李翠兰, 等. 探月卫星同波束干涉测量技术应用研究[J]. 电子与信息学报, 2019, 41(8): 1960-1965. HAN Songtao, CHEN Ming, LI Cuilan, et al. Research on application of same-beam interferometry in China lunar exploration[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1960-1965. [19] 郑鑫, 刘庆会, 吴亚军, 等. 基于同波束VLBI差分相时延的“玉兔”月球车动作监视分析[J]. 中国科学: 物理学力学天文学, 2014, 44(8): 872-878. ZHENG Xin, LIU Qinghui, WU Yajun, et al. Motion monitoring and analysis of Chang'e-3 rover based on same-beam VLBI differential phase delay[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(8): 872-878. [20] 刘庆会, 吴亚军, 黄勇, 等. 基于同波束VLBI的火星车测定位技术[J]. 中国科学: 物理学力学天文学, 2015, 45(9): 92-99. LIU Qinghui, WU Yajun, HUANG Yong, et al. Mars rover positioning technology based on same-beam VLBI[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(9): 92-99. [21] 刘庆会. 同波束VLBI技术在深空探测器测定轨中的应用[J]. 遥测遥控, 2016, 37(6): 36-44. LIU Qinghui. Applications of same-beam VLBI technology in orbit determination of deep space satellites[J]. Journal of Telemetry, Tracking and Command, 2016, 37(6): 36-44. [22] 刘庆会, 昌胜骐, 黄勇, 等. 火星探测器跟踪及VLBI测定轨分析[J]. 中国科学: 物理学力学天文学, 2017, 47(9): 113-119. LIU Qinghui, CHANG Shengqi, HUANG Yong, et al. Mars spacecraft tracking and analysis of VLBI orbit determination[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(9): 113-119. [23] 杨鹏, 黄勇, 李培佳, 等. 同波束VLBI测量下的天问一号火星车定位及精度分析[J]. 武汉大学学报(信息科学版), 2023, 48(1): 84-91. YANG Peng, HUANG Yong, LI Peijia, et al. Positioning and accuracy analysis of Tianwen-1 Mars rover based on same-beam VLBI measurement[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 84-91. [24] 刘庆会, 赵融冰, 舒逢春, 等. 大型射电望远镜的火星探测器跟踪技术[J]. 中国科学: 信息科学, 2019, 49(6): 775-782. LIU Qinghui, ZHAO Rongbing, SHU Fengchun, et al. Tracking technology of Mars spacecraft for large radio telescope[J]. Scientia Sinica (Informationis), 2019, 49(6): 775-782. [25] 徐晴, 牛俊坡, 施伟璜, 等. 基于轨道器的火星着陆器定位及精度分析[J]. 航天返回与遥感, 2016, 37(6): 28-38. XU Qing, NIU Junpo, SHI Weihuang, et al. Positioning and precision analysis for Mars lander based on orbiter measurement[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(6): 28-38. [26] 徐晴, 彭玉明. 基于火星轨道器的着陆器定位误差及可观性分析[J]. 航天返回与遥感, 2017, 38(4): 18-26. XU Qing, PENG Yuming. Error and observability analysis for Mars lander positioning based on orbiter measurement[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(4): 18-26. [27] 陆启省, 南树军, 白沁园, 等. 基于单星定位的火星着陆器初定位方法研究[J]. 航天返回与遥感, 2012, 33(6): 10-16. LU Qisheng, NAN Shujun, BAI Qinyuan, et al. Initial location method for Mars lander based on single satellite location[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 10-16. [28] MOYER T D. Formulation for observed and computed values of deep space network data types for navigation[M]. Hoboken: Wiley, 2003. [29] ARCHINAL B A, ACTON C H, A'HEARN M F, et al. Report of the IAU working group on cartographic coordinates and rotational elements: 2015[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130(3): 1-46. [30] 曹建峰, 刘磊, 黄勇, 等. 火星指向模型与重力场模型的发展回顾与使用[J]. 天文学进展, 2017, 35(1): 127-139. CAO Jianfeng, LIU Lei, HUANG Yong, et al. Review and the utilization of Martian orientation model and gravity field model[J]. Progress in Astronomy, 2017, 35(1): 127-139. [31] KONOPLIV A S, PARK R S, FOLKNER W M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data[J]. Icarus, 2016, 274: 253-260. [32] GENOVA A, GOOSSENS S, LEMOINE F G, et al. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science[J]. Icarus, 2016, 272: 228-245. [33] 李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995: 62-85. LI Jisheng. Precise orbit determination of artificial satellite[M].Beijing:PLA Publishing House,1995:62-85. |