[1] |
LEMOINE F G, SMITH D E, KUNZ L, et al. The development of the NASA GSFC and NIMA joint geopotential model[C]//Proceedings of 1997 International Association of Geodesy Symposia. Berlin: Springer, 1997: 461-469.
|
[2] |
PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research (Solid Earth), 2012, 117(B4):B04406.
|
[3] |
ZINGERLE P, PAIL R, GRUBER T, et al. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 2020, 94(7):66.
|
[4] |
李建成. 最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011[J]. 测绘学报, 2012, 41(5):651-660,669.
|
|
LI Jiancheng. The recent Chinese terrestrial digital height datum model: gravimetric quasi-geoid CNGG2011 [J]. Acta Geodaeticaet Cartographica Sinica, 2012, 41(5):651-660,669.
|
[5] |
宁津生, 罗志才, 杨沾吉, 等. 深圳市1 km高分辨率厘米级高精度大地水准面的确定[J]. 测绘学报, 2003, 32(2):102-107.
|
|
NING Jinsheng, LUO Zhicai, YANG Zhanji, et al. Determination of Shenzhen geoid with 1 km resolution and centimeter accuracy[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(2):102-107.
|
[6] |
HIRT C, KUHN M. Evaluation of high-degree series expansions of the topographic potential to higher-order powers[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B12):2012JB009492.
|
[7] |
HOLMES S A, FEATHERSTONE W E. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions[J]. Journal of Geodesy, 2002, 76(5):279-299.
|
[8] |
XING Zhibin, LI Shanshan, TIAN Miao, et al. Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order[J]. Journal of Geodesy, 2019, 94(1):2.
|
[9] |
吴星, 张传定, 王凯. 卫星重力梯度边值问题的点质量调和分析[J]. 测绘学报, 2011, 40(2):213-219.
|
|
WU Xing, ZHANG Chuanding, WANG Kai. Point-mass harmonic analysis of satellite gradiometry boundary value problem[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):213-219.
|
[10] |
于锦海, 曾艳艳, 朱永超, 等. 超高阶次Legendre函数的跨阶数递推算法[J]. 地球物理学报, 2015, 58(3):748-755.
|
|
YU Jinhai, ZENG Yanyan, ZHU Yongchao, et al. A recursion arithmetic formula for Legendre functions of ultra-high degree and order on every other degree[J]. Chinese Journal of Geophysics, 2015, 58(3):748-755.
|
[11] |
吴星, 刘雁雨. 多种超高阶次缔合勒让德函数计算方法的比较[J]. 测绘科学技术学报, 2006, 23(3):188-191.
|
|
WU Xing, LIU Yanyu. Comparison of computing methods of the ultra-high degree and order[J]. Journal of Geomatics Science and Technology, 2006, 23(3):188-191.
|
[12] |
CLENSHAW C W. A note on the summation of Chebyshev series[J]. Mathematics of Computation, 1955, 9(51):118-120.
|
[13] |
JEKELI C, LEE J K, KWON J H. On the computation and approximation of ultra-high-degree spherical harmonic series[J]. Journal of Geodesy, 2007, 81(9):603-615.
|
[14] |
赵德军, 吴晓平. 基于Clenshaw求和法的重力场元计算[J]. 海洋测绘, 2004, 24(6):13-15, 26.
|
|
ZHAO Dejun, WU Xiaoping. Computations of gravity quantities based on clenshaw summation method[J]. Hydrographic Surveying and Charting, 2004, 24(6):13-15, 26.
|
[15] |
COLOMBO O L. Numerical methods for harmonic analysis on the sphere [R]. Columbus: The Ohio State University, 1981.
|
[16] |
SNEEUW N, BUN R. Global spherical harmonic computation by two-dimensional Fourier methods[J]. Journal of Geodesy, 1996, 70(4):224-232.
|
[17] |
RIZOS C. An efficient computer technique for the evaluation of geopotential from spherical harmonics [J]. Australian Journal of Geodesy and Photogrammetry, 1979, 31.
|
[18] |
李新星, 李建成, 刘晓刚, 等. 球谐旋转变换结合非全次Legendre方法的局部六边形网格重力场球谐综合[J]. 地球物理学报, 2021, 64(11):3933-3947.
|
|
LI Xinxing, LI Jiancheng, LIU Xiaogang, et al. Spherical harmonic synthesis of local hexagonal grid point gravity anomalies with non-full-order Legendre method combined with spherical harmonic rotation transformation[J]. Chinese Journal of Geophysics, 2021, 64(11):3933-3947.
|
[19] |
MOAZEZI S, ZOMORRODIAN H, SIAHKOOHI H R, et al. Fast ultrahigh-degree global spherical harmonic synthesis on nonequispaced grid points at irregular surfaces[J]. Journal of Geodesy, 2016, 90(9):853-870.
|
[20] |
KUNIS S, POTTS D. Fast spherical Fourier algorithms[J]. Journal of Computational and Applied Mathematics, 2003, 161(1):75-98.
|
[21] |
BUCHA B, JANÁK J. A Matlab-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: efficient computation at irregular surfaces[J]. Computers & Geosciences, 2014, 66:219-227.
|
[22] |
邢志斌, 李姗姗, 曲政豪, 等. 局部区域模型重力异常快速算法[J]. 测绘科学技术学报, 2016, 33(6):566-571.
|
|
XING Zhibing, LI Shanshan, QU Zhenghao, et al. Fast method for model gravity anomalies calculation in local areas[J]. Journal of Geomatics Science and Technology, 2016, 33(6):566-571.
|
[23] |
范昊鹏, 李姗姗. 局部区域模型重力异常快速算法研究[J]. 大地测量与地球动力学, 2013, 33(6):28-30, 35.
|
|
FAN Haopeng, LI Shanshan. Study on a fast algorithm for model gravity anomalies in local areas[J]. Journal of Geodesy and Geodynamics, 2013, 33(6):28-30, 35.
|
[24] |
JIANG Tao, XU Xinyu, CHU Yonghai, et al. Review of the research progress on static earth gravity field and vertical datum in China during 2019-2023[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3):76-86.
|
[25] |
DANG Y. Preface to the special issue on the 2019—2023 China national report on geodesy[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3):3-4.
|
[26] |
SEIF M R, SHARIFI M A, ESHAGH M. Polynomial approximation for fast generation of associated Legendre functions[J]. Acta Geodaetica et Geophysica, 2018, 53(2):275-293.
|
[27] |
LI Xinxing, LI Jiancheng, TONG Xiaochong, et al. The employment of quasi-hexagonal grids in spherical harmonic analysis and synthesis for the earth's gravity field[J]. Journal of Geodesy, 2022, 96(11):89.
|
[28] |
FUKUSHIMA T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers[J]. Journal of Geodesy, 2012, 86(4):271-285.
|
[29] |
刘晓刚. GOCE卫星测量恢复地球重力场模型的理论与方法[D]. 郑州: 信息工程大学, 2011.
|
|
LIU Xiaogang. Theory and method of recovering earth gravity field model by GOCE satellite measurement[D]. Zhengzhou: Information Engineering University, 2011.
|
[30] |
HOFMANN-WELLENHOF B, MORITZ H. Physical geodesy [M]. New York: Springer, 2002.
|
[31] |
贲进, 童晓冲, 张永生, 等. 球面等积六边形离散网格的生成算法及变形分析[J]. 地理与地理信息科学, 2006, 22(1):7-11.
|
|
BEN Jin, TONG Xiaochong, ZHANG Yongsheng, et al. A generation algorithm of spherical equal-area hexagonal discrete gird and analysis of its deformation[J]. Geography and Geo-Information Science, 2006, 22(1):7-11.
|
[32] |
STOUGH T, CRESSIE N, KANG E L, et al. Spatial analysis and visualization of global data on multi-resolution hexagonal grids[J]. Japanese Journal of Statistics and Data Science, 2020, 3(1):107-128.
|
[33] |
许厚泽, 蒋福珍. 关于重力异常球函数展式的变换[J]. 测绘学报, 1964, 7(4):252-260.
|
|
XU Houze, JIANG Fuzhen. On the transformation of the gravity anomaly expansion of spherical function[J]. Acta Geodaetica et Cartographica Sinica, 1964, 7(4):252-260.
|
[34] |
金文华, 何涛, 刘晓平, 等. 基于有序简单多边形的平面点集凸包快速求取算法[J]. 计算机学报, 1998, 21(6):533-539.
|
|
JIN Wenhua, HE Tao, LIU Xiaoping, et al. A fast convex hull algorithm of planar point set based on sorted simple polygon[J]. Chinese Journal of Computers, 1998, 21(6):533-539.
|
[35] |
SHAMOS M. Computational geometry[D]. New Haven: Yale University, 1978.
|