测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 1993-2006.doi: 10.11947/j.AGCS.2024.20230220.
• 大地测量学与导航 • 上一篇
孙猛1,2,(), 汪云甲1,2(), 王潜心1,2, 陈国良1,2, 李增科1,2
收稿日期:
2023-06-20
发布日期:
2024-11-26
通讯作者:
汪云甲
E-mail:msun@cumt.edu.cn;wyjc411@163.com
作者简介:
孙猛(1995—),男,博士,讲师,主要研究方向为室内定位与导航。E-mail:msun@cumt.edu.cn
基金资助:
Meng SUN1,2,(), Yunjia WANG1,2(), Qianxin WANG1,2, Guoliang CHEN1,2, Zengke LI1,2
Received:
2023-06-20
Published:
2024-11-26
Contact:
Yunjia WANG
E-mail:msun@cumt.edu.cn;wyjc411@163.com
About author:
SUN Meng (1995—), male, PhD, lecturer, majors in indoor positioning and navigation. E-mail: msun@cumt.edu.cn
Supported by:
摘要:
基于精细时间测量协议(FTM)的Wi-Fi RTT定位是目前领域内的研究热点,但其定位算法性能的评估手段较为单一且缺乏理论基础,Wi-Fi接入点(AP)布局对于定位精度的影响也尚未深入研究。本文以智能手机Wi-Fi FTM为研究对象,推导了基于Wi-Fi RTT/RSS混合定位方法的克拉美罗下界(CRLB),阐明了单一定位与混合定位方法CRLB的理论关系,为算法性能评估确立了理论依据;研究了Wi-Fi AP布局对RTT/RSS混合定位精度的影响,以增强遗传算法(EGA)和CRLB为基础,设计了Wi-Fi RTT/RSS混合定位的最优节点布局方案。研究表明,Wi-Fi RSS/RTT混合定位可作为高效的FTM定位方法,提出的基于EGA和CRLB的最优节点布局方法能快速给出定位区域内的最优AP布局方案。试验结果表明,在最优节点布局下(7个Wi-Fi节点),Wi-Fi RSS、RTT和RSS/RTT混合定位在本文试验环境的理论精度分别为0.92、1.07和0.61 m。研究结果可为Wi-Fi FTM定位算法性能评估提供理论支持,也能为合理布设Wi-Fi节点、减少定位成本投入提供可行方案。
中图分类号:
孙猛, 汪云甲, 王潜心, 陈国良, 李增科. Wi-Fi RTT/RSS混合定位CRLB推导与最优节点布局设计[J]. 测绘学报, 2024, 53(10): 1993-2006.
Meng SUN, Yunjia WANG, Qianxin WANG, Guoliang CHEN, Zengke LI. Wi-Fi RTT/RSS fusion localization CRLB derivation and optimal access points layout design[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1993-2006.
表1
Wi-Fi FTM定位方法对比"
定位方法 | NLoS/LoS识别 | 测距补偿 | 测试场景 | 定位精度 |
---|---|---|---|---|
Wi-Fi FTM+地图[ | 否 | 无 | 试验室办公环境(>1000 m2) | <2 m (90%) |
Wi-Fi FTM+GPS+里程计[ | 否 | 有/多径补偿 | 市区街道/住宅区/郊区环境 | 1.3 m/2.1 m/0.8 m |
Wi-Fi FTM+RSS测距[ | 否 | 有/钟差补偿 | 室内房间(16.7 m×12.14 m) | 1.44 m |
Wi-Fi FTM+RSS测距+PDR[ | 否 | 有/RSS测距 | 建筑楼/办公室 | 0.58 m(50%) |
Wi-Fi RSS测距+FTM+PDR[ | 否 | 有/RSS测距 | 2层试验室环境(33 m×9 m) | <1.1 m(67.5%) |
Wi-Fi RSS测距+FTM+PDR[ | 无 | 有/RSS测距 | 室内办公环境(约126 m2) | 0.39 m |
时空约束的Wi-Fi FTM定位[ | 无 | 无 | 办公室环境 | <1 m (80%) |
基于高斯模型的Wi-Fi FTM定位[ | 是 | 无 | 试验室办公环境(20 m×8 m) | <1 m |
基于高斯过程回归的Wi-Fi FTM定位[ | 是 | 有/NLOS误差补偿 | 试验室办公环境(20 m×8 m) | <1 m |
Wi-Fi FTM+PDR[ | 是 | 有/测距误差补偿 | 试验室办公环境(20 m×8 m) | 0.98 m |
Wi-Fi FTM+Encoder+INS[ | 否 | 无 | LoS/NLoS环境 | 0.54 m/0.77 m |
Wi-Fi FTM+地图+MEMS[ | 是 | 无 | 2层试验室环境 | <1 m (94%) |
[1] | YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):1-7. |
[2] |
陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones: the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
|
[3] |
陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
|
[4] | IEEE Standard Association. IEEE standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks-specific requirements—Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. [S.l.]: IEEE, 2016. |
[5] | ANDROID Developers. Wi-Fi location: ranging with RTT[EB/OL]. [2024-02-08]. https://developer.android.com/develop/connectivity/wifi/wifi-rtt. |
[6] | BANIN L, SCHATZBERG U, AMIZUR Y. WiFi FTM and map information fusion for accurate positioning[C]//Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation. Alcalá de Henares: IEEE, 2016. |
[7] | BANIN L, BAR-SHALOM O, DVORECKI N, et al. Scalable Wi-Fi client self-positioning using cooperative FTM-sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10):3686-3698. |
[8] | DVORECKI N, BAR-SHALOM O, BANIN L, et al. A machine learning approach for Wi-Fi RTT ranging[C]//Proceedings of 2019 International Technical Meeting of the Institute of Navigation. Reston: Institute of Navigation, 2019. |
[9] | IBRAHIM M, LIU Hansi, JAWAHAR M, et al. Verification: accuracy evaluation of WiFi fine time measurements on an open platform[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New Delhi: ACM Press, 2018. |
[10] | IBRAHIM M, ROSTAMI A, YU Bo, et al. Wi-Go: accurate and scalable vehicle positioning using WiFi fine timing measurement[C]//Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services. Toronto: ACM Press, 2020. |
[11] | JIOKENG K, JAKLLARI G, TCHANA A, et al. When FTM discovered MUSIC: accurate WiFi-based ranging in the presence of multipath[C]//Proceedings of 2020 IEEE Conference on Computer Communications. Toronto: IEEE, 2020: 1857-1866. |
[12] | CHAN Haowei, LAI A I C, WU R B. Transfer learning of Wi-Fi FTM responder positioning with NLOS identification[C]//Proceedings of 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks. San Diego: IEEE, 2021: 23-26. |
[13] | DONG Yinhuan, ARSLAN T, YANG Yunjie. Real-time NLOS/LOS identification for smartphone-based indoor positioning systems using WiFi RTT and RSS[J]. IEEE Sensors Journal, 2022, 22(6):5199-5209. |
[14] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. A robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors[J]. Remote Sensing, 2019, 11(5):504. |
[15] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Indoor smartphone localization: a hybrid WiFi RTT-RSS ranging approach[J]. IEEE Access, 2019, 7:176767-176781. |
[16] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Arobust integration platform of Wi-Fi RTT, RSS signal, and MEMS-IMU for locating commercial smartphone indoors[J]. IEEE Internet of Things Journal, 2022, 9(17):16322-16331. |
[17] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. Precise 3D indoor localization based on Wi-Fi FTM and built-in sensors[J]. IEEE Internet of Things Journal, 2020, 7(12):11753-11765. |
[18] | GUO Guangyi, CHEN Ruizhi, NIU Xiaoguang, et al. Factor graph framework for smartphone indoor localization: integrating data-driven PDR and Wi-Fi RTT/RSS ranging[J]. IEEE Sensors Journal, 2023, 23(11):12346-12354. |
[19] | SHAO Wenhua, LUO Haiyong, ZHAO Fang, et al. Accurate indoor positioning using temporal-spatial constraints based on Wi-Fi fine time measurements[J]. IEEE Internet of Things Journal, 2020, 7(11):11006-11019. |
[20] | 阎硕. 基于Wi-Fi精细时间测量的测距定位算法研究[D]. 北京: 北京邮电大学, 2020. |
YAN Shuo. The research of Wi-Fi fine time measurement based indoor positioning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. | |
[21] | 邵文华. 室内移动位置感知关键技术研究[D]. 北京: 北京邮电大学, 2019. |
SHAO Wenhua. Research on key technologies of indoor mobile location awareness[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
[22] | SI Minghao, WANG Yunjia, XU Shenglei, et al. A Wi-Fi FTM-based indoor positioning method with LOS/NLOS identification[J]. Applied Sciences, 2020, 10(3):956. |
[23] | CAO Hongji, WANG Yunjia, BI Jingxue, et al. Indoor positioning method using WiFi RTT based on LOS identification and range calibration[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):627. |
[24] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor positioning tightly coupled Wi-Fi FTM ranging and PDR based on the extended Kalman filter for smartphones[J]. IEEE Access, 2020, 8:49671-49684. |
[25] | ZHOU Baoding, WU Zhiqian, CHEN Zhipeng, et al. Wi-Fi RTT/encoder/INS-based robot indoor localization using smartphones[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5):6683-6694. |
[26] | HUANG Lu, YU Baoguo, LI Hongsheng, et al. HPIPS: a high-precision indoor pedestrian positioning system fusing WiFi-RTT, MEMS, and map information[J]. Sensors, 2020, 20(23):6795. |
[27] | KAY S M. Fundamentals of statistical signal processing[M]. Englewood Cliffs: Prentice-Hall PTR, 1993. |
[28] | PLETS D, JOSEPH W, VANHECKE K, et al. Coverage prediction and optimization algorithms for indoor environments[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1):123. |
[29] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor geomagnetic positioning using the enhanced genetic algorithm-based extreme learning machine[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11. |
[1] | 程建华, 陈思成, 臧楠, 程思翔, 赵国晶, 马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型[J]. 测绘学报, 2024, 53(9): 1761-1776. |
[2] | 李亮, 王柳淇, 王宁波, 李敏, 李子申, 杜丰泽, 庞帅, 那志博. PPP-RTK修正产品矢量化完好性监测方法[J]. 测绘学报, 2024, 53(9): 1777-1789. |
[3] | 方志祥, 王禄斌. 面向行人导航意图探测的脑电分类研究[J]. 测绘学报, 2024, 53(9): 1829-1841. |
[4] | 林贻若, 余科根, 朱飞洋, 布金伟. 一种基于GWO-BP神经网络的RSSI测距算法[J]. 测绘学报, 2024, 53(8): 1564-1573. |
[5] | 勾万祥, 李崇辉, 詹银虎, 杨原, 郑勇. 偏振滤光增强白昼测星信噪比效能分析[J]. 测绘学报, 2024, 53(8): 1574-1585. |
[6] | 丁君生. GNSS对流层延迟偏差时空特性分析及建模研究[J]. 测绘学报, 2024, 53(8): 1659-1659. |
[7] | 陈超. 城市环境下惯性信息辅助GNSS精密定位模糊度固定方法研究[J]. 测绘学报, 2024, 53(8): 1662-1662. |
[8] | 徐南. 利用陆地卫星监测1987—2016年全球海岸线变化[J]. 测绘学报, 2023, 52(4): 691-691. |
[9] | 袁俊军, 李凯, 唐成盼, 周善石, 胡小工, 曹建峰. 面向精密位置服务的低轨卫星轨道预报精度分析[J]. 测绘学报, 2022, 51(5): 640-647. |
[10] | 杨凯淳, 吕志平, 李林阳, 邝英才, 许炜, 郑茜. 附加历元间约束的滑动窗单频实时精密单点定位算法[J]. 测绘学报, 2022, 51(5): 648-657. |
[11] | 朱锋. GNSS/SINS/视觉多传感器融合的精密定位定姿方法与关键技术[J]. 测绘学报, 2022, 51(5): 782-782. |
[12] | 刘斌. 基于ICA的垂向GNSS坐标时间序列时空分析建模及反演的理论与方法[J]. 测绘学报, 2022, 51(5): 783-783. |
[13] | 黄刚. 基于深度学习的移动激光点云数据自动分类方法研究[J]. 测绘学报, 2022, 51(5): 786-786. |
[14] | 柴大帅. 多星座GNSS/INS组合导航理论与方法研究[J]. 测绘学报, 2022, 51(5): 787-787. |
[15] | 柳根. 多频多模PPP非组合模糊度固定方法和关键技术研究[J]. 测绘学报, 2020, 49(6): 798-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||