[1] |
DUAN Jingping, BEVIS M, FANG Peng, et al. GPS meteorology: direct estimation of the absolute value of precipitable water[J]. Journal of Applied Meteorology, 1996, 35(6): 830-838.
|
[2] |
ZHAO Yanyan, ZHAO Hongwei, LI Junqiang, et al. Comprehensive validation and calibration of MODIS PWV over mainland China[J]. Atmosphere, 2022, 13(11): 1763.
|
[3] |
LI Longjiang, ZHANG Kefei, WU Suqin, et al. An improved method for rainfall forecast based on GNSS-PWV[J]. Remote Sensing, 2022, 14(17): 4280.
|
[4] |
BARBAROSA A, WIJAYA D D, TANUWIJAYA Z A J, et al. Correlation analysis of GNSS-derived precipitable water vapor (PWV) with rainfall data in Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1245(1): 012035.
|
[5] |
施闯, 张卫星, 曹云昌, 等. 基于北斗/GNSS的中国-中南半岛地区大气水汽气候特征及同降水的相关分析[J]. 测绘学报, 2020, 49(9): 1112-1119. DOI:.
doi: 10.11947/j.AGCS.2020.20200339
|
|
SHI Chuang, ZHANG Weixing, CAO Yunchang, et al. Atmospheric water vapor climatological characteristics over Indo-China region based on BeiDou/GNSS and relationships with precipitation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1112-1119. DOI:.
doi: 10.11947/j.AGCS.2020.20200339
|
[6] |
KE Fuyang, ZHAO Pan, YU Wei, et al. Response of Meiyu process considering the temporal and spatial characteristics of GNSS PWV[J]. Theoretical and Applied Climatology, 2024, 155(2): 1301-1319.
|
[7] |
郑志卿, 张克非, 师嘉奇, 等. GNSS-PWV结合多气象要素分析“21·7”河南特大暴雨过程[J]. 大地测量与地球动力学, 2023, 43(8): 809-815.
|
|
ZHENG Zhiqing, ZHANG Kefei, SHI Jiaqi, et al. GNSS-PWV combined with multi-meteorological elements analysis of “21·7” Henan heavy rain process[J]. Journal of Geodesy and Geodynamics, 2023, 43(8): 809-815.
|
[8] |
ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167: 124-133.
|
[9] |
LE T T, PHAM B T, LY H B, et al. Development of 48-hour precipitation forecasting model using nonlinear autoregressive neural network[M]. Singapore: Springer Singapore, 2019: 1191-1196.
|
[10] |
LIU Yang, ZHAO Qingzhi, YAO Wanqiang, et al. Short-term rainfall forecast model based on the improved BP-NN algorithm[J]. Scientific Reports, 2019, 9: 19751.
|
[11] |
BENEVIDES P, CATALAO J, NICO G. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors[J]. Remote Sensing, 2019, 11(8): 966.
|
[12] |
YAO Yibin, SHAN Lulu, ZHAO Qingzhi. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Scientific Reports, 2017, 7: 12465.
|
[13] |
MA Zengqi, GUO Guohe, CAI Min, et al. A combined linear-nonlinear short-term rainfall forecast method using GNSS-derived PWV[J]. Atmosphere, 2022, 13(9): 1381.
|
[14] |
GONG Yangzhao, LIU Zhizhao. Evaluating the accuracy of Jason-3 water vapor product using PWV data from global radiosonde and GNSS stations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4008-4017.
|
[15] |
ZHU Dantong, ZHANG Kefei, YANG Liu, et al. Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset[J]. Remote Sensing, 2021, 13(14): 2761.
|
[16] |
LU Cuixian, ZHANG Yushan, ZHENG Yuxin, et al. Precipitable water vapor fusion of MODIS and ERA5 based on convolutional neural network[J]. GPS Solutions, 2022, 27(1): 15.
|
[17] |
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models[J]. Earth and Space Science, 2021, 8(5): e2020EA001516.
|
[18] |
于维. 融合GNSS可降水量的江苏省梅雨演变规律及预测研究[D]. 南京: 南京信息工程大学, 2022.
|
|
YU Wei. Study on evolution and prediction of Meiyu in Jiangsu Province with GNSS precipitable water vapor[D]. Nanjing: Nanjing University of Information Science and Technology, 2022.
|
[19] |
YANG Fei, SUN Yilin, MENG Xiaolin, et al. Assessment of tomographic window and sampling rate effects on GNSS water vapor tomography[J]. Satellite Navigation, 2023, 4(1): 7.
|
[20] |
YANG Fei, GONG Xu, WANG Yingying, et al. GNSS water vapor tomography based on Kalman filter with optimized noise covariance[J]. GPS Solutions, 2023, 27(4): 181.
|
[21] |
杨飞, 郭际明, 陈明, 等. GNSS大气加权平均温度经验模型精化方法的建立和分析[J]. 测绘学报, 2022, 51(11): 2339-2345. DOI:.
doi: 10.11947/j.AGCS.2022.20210269
|
|
YANG Fei, GUO Jiming, CHEN Ming, et al. Establishment and analysis of a refinement method for the GNSS empirical weighted mean temperature model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2339-2345. DOI:.
doi: 10.11947/j.AGCS.2022.20210269
|
[22] |
YANG Fei, GUO Jiming, MENG Xiaolin, et al. Establishment and assessment of a new GNSS precipitable water vapor interpolation scheme based on the GPT2w model[J]. Remote Sensing, 2019, 11(9): 1127.
|
[23] |
施闯, 周凌昊, 范磊, 等. 利用北斗/GNSS观测数据分析“21·7”河南极端暴雨过程[J]. 地球物理学报, 2022, 65(1): 186-196.
|
|
SHI Chuang, ZHOU Linghao, FAN Lei, et al. Analysis of “21·7” extreme rainstorm process in Henan province by using BeiDou/GNSS observation[J]. Chinese Journal of Geophysics, 2022, 65(1): 186-196.
|
[24] |
黄良珂, 莫智翔, 刘立龙, 等. 顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J]. 测绘学报, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530
|
|
HUANG Liangke, MO Zhixiang, LIU Lilong, et al. An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for Mainland China[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1320-1330. DOI:.
doi: 10.11947/j.AGCS.2021.20200530
|
[25] |
LU Cuixian, LI Xingxing, GE Maorong, et al. Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS[J]. GPS Solutions, 2016, 20(4): 703-713.
|
[26] |
WANG Hao, HE Jianxin, WEI Ming, et al. Synthesis analysis of one severe convection precipitation event in Jiangsu using ground-based GPS technology[J]. Atmosphere, 2015, 6(7): 908-927.
|