
测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 840-852.doi: 10.11947/j.AGCS.2025.20240242
收稿日期:2024-06-17
修回日期:2025-03-27
出版日期:2025-06-23
发布日期:2025-06-23
通讯作者:
李邵波
E-mail:1202321101@cug.edu.cn;lishaobo@cug.edu.cn
作者简介:高浩龙(2001—),男,硕士生,研究方向为海洋测绘。E-mail:1202321101@cug.edu.cn
基金资助:
Haolong GAO1,2(
), Shaobo LI1,2,3(
), Jianhu ZHAO4,5
Received:2024-06-17
Revised:2025-03-27
Online:2025-06-23
Published:2025-06-23
Contact:
Shaobo LI
E-mail:1202321101@cug.edu.cn;lishaobo@cug.edu.cn
About author:GAO Haolong (2001—), male, postgraduate, majors in marine surveying and mapping. E-mail: 1202321101@cug.edu.cn
Supported by:摘要:
气垫船载激光雷达扫描系统可以实现海岸带点云数据获取,但其数据质量受多路径效应引起的负异常点影响,限制了后续应用。本文针对该类异常点的形成机制,提出了一种基于镜像结构和强度特征约束的多路径负异常点去除方法。该方法首先通过区域生长和二次最小二乘拟合获取镜像面;然后,对区域生长得到的点云簇进行几何结构和强度特征的描述;最后,基于镜像面,在镜像空间内建立点云簇的几何结构和强度特征的对应关系,从而识别并剔除具有镜像特征的负异常点。试验结果显示,本文方法在去除海岸带滩涂地形中的负异常点时,精准率和召回率分别达到了90.83%和76.05%,有效实现了负异常点去除,并在较大程度上保留了地形特征,在需要高精度去噪的场景中,提升了后续数据应用的可靠性。
中图分类号:
高浩龙, 李邵波, 赵建虎. 镜像结构和强度特征约束的海岸带LiDAR点云多路径负异常点去除方法[J]. 测绘学报, 2025, 54(5): 840-852.
Haolong GAO, Shaobo LI, Jianhu ZHAO. Multipath negative outlier removal method for coastal LiDAR point clouds based on mirror structure and intensity feature constraints[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 840-852.
表2
小区域算法精度"
| 算法 | 测区 | 负异常点 | 正常点 | TP | FP | FN | Precision/(%) | Recall/(%) | F1值/(%) |
|---|---|---|---|---|---|---|---|---|---|
| BCSF | 区域一 | 2157 | 196 332 | 1690 | 467 | 1574 | 78.35 | 51.78 | 62.35 |
| 区域二 | 3632 | 60 318 | 3439 | 193 | 149 | 94.69 | 95.85 | 95.26 | |
| RandLA-Net | 区域一 | 2330 | 196 159 | 1336 | 994 | 1928 | 57.34 | 40.93 | 47.77 |
| 区域二 | 3871 | 60 079 | 2923 | 948 | 665 | 75.51 | 81.47 | 78.38 | |
| 本文算法 | 区域一 | 2692 | 195 797 | 2148 | 544 | 1116 | 79.79 | 65.81 | 72.13 |
| 区域二 | 3738 | 60 212 | 3524 | 214 | 64 | 94.28 | 98.22 | 96.21 |
| [1] | LEE J M, PARK J Y, CHOI J Y. Evaluation of sub-aerial topographic surveying techniques using total station and RTK-GPS for applications in macrotidal sand beach environment[J]. Journal of Coastal Research, 2013, 65: 535-540. |
| [2] | DALLOZ L, BRAND A, CHINIAH I, et al. Autonomous area mapping with low cost hovercraft platform[J]. Applied Mechanics and Materials, 2015, 799/800: 1102-1106. |
| [3] | CARRILHO A C, GALO M, SANTOS R C. Statistical outlier detection method for airborne LiDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42: 87-92. |
| [4] | LAU L. GNSS multipath errors and mitigation techniques[M]//GPS and GNSS technology in geosciences. Amsterdam: Elsevier, 2021: 77-98. |
| [5] | MATKAN A A, HAJEB M, MIRBAGHERI B, et al. Spatial analysis for outlier removal from LiDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 40: 187-190. |
| [6] | SITHOLE G, VOSSELMAN G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1/2): 85-101. |
| [7] | ZEYBEK M, ŞANLIOĞLU I. Point cloud filtering on UAV based point cloud[J]. Measurement, 2019, 133: 99-111. |
| [8] | BAILEY G, LI Y K, MCKINNEY N, et al. Comparison of ground point filtering algorithms for high-density point clouds collected by terrestrial LiDAR[J]. Remote Sensing, 2022, 14(19): 4776. |
| [9] | ERISOGLU M, CALIS N, SAKALLIOGLU S. A new algorithm for initial cluster centers in k-means algorithm[J]. Pattern Recognition Letters, 2011, 32(14): 1701-1705. |
| [10] | SOTOODEH S. Outlier detection in laser scanner point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36(5): 297-302. |
| [11] | BALTA H, VELAGIC J, BOSSCHAERTS W, et al. Fast statistical outlier removal based method for large 3D point clouds of outdoor environments[J]. IFAC-PapersOnLine, 2018, 51(22): 348-353. |
| [12] | YUAN Xiaocui, CHEN Huawei, LIU Baoling. Point cloud clustering and outlier detection based on spatial neighbor connected region labeling[J]. Measurement and Control, 2021, 54(5/6): 835-844. |
| [13] |
郭娇娇, 陈传法, 姚喜, 等. 基于多特征聚类的复杂环境机载点云层次滤波方法[J]. 测绘学报, 2023, 52(10): 1724-1737. DOI: .
doi: 10.11947/j.AGCS.2023.20220371 |
|
GUO Jiaojiao, CHEN Chuanfa, YAO Xi, et al. A multi-feature clustering-based hierarchical filtering method for airborne LiDAR point clouds in complex landscapes[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1724-1737. DOI: .
doi: 10.11947/j.AGCS.2023.20220371 |
|
| [14] | VOSSELMAN G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(): 935-942. |
| [15] | SUSAKI J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation[J]. Remote Sensing, 2012, 4(6): 1804-1819. |
| [16] | 汪文琪, 李宗春, 付永健, 等. 一种多尺度自适应点云坡度滤波算法[J]. 武汉大学学报(信息科学版), 2022, 47(3): 438-446. |
| WANG Wenqi, LI Zongchun, FU Yongjian, et al. A multi-scale adaptive slope filtering algorithm for point cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. | |
| [17] | 沈蔚, 杨智松, 廖德亮, 等. 基于阈值自适应确定的多波束点云滤波算法[J]. 海洋测绘, 2023, 43(6): 6-11. |
| SHEN Wei, YANG Zhisong, LIAO Deliang, et al. An adaptive threshold-based multi-beam point cloud filtering algorithm[J]. Hydrographic Surveying and Charting, 2023, 43(6): 6-11. | |
| [18] | ZHANG K Q, CHEN S C, WHITMAN D, et al. A progressive morphological filter for removing nonground measurements from airborne LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872-882. |
| [19] | MENG Xiangshuang, LIN Yi, YAN Lei, et al. Airborne LiDAR point cloud filtering by a multilevel adaptive filter based on morphological reconstruction and thin plate spline interpolation[J]. Electronics, 2019, 8(10): 1153. |
| [20] | BALADO J, VAN OOSTEROM P, DÍAZ-VILARIÑO L, et al. Mathematical morphology directly applied to point cloud data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 208-220. |
| [21] | PFEIFER N, REITER T, BRIESE C, et al. Interpolation of high quality ground models from laser scanner data in forested areas[J]. International Archives of Photogrammetry and Remote Sensing, 1999, 32(3/W14): 31-36. |
| [22] | MONGUS D, ŽALIK B. Parameter-free ground filtering of LiDAR data for automatic DTM generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 1-12. |
| [23] |
王乐洋, 陈汉清. 多波束测深数据处理的抗差最小二乘配置迭代解法[J]. 测绘学报, 2017, 46(5): 658-665. DOI: .
doi: 10.11947/j.AGCS.2017.20160491 |
|
WANG Leyang, CHEN Hanqing. Multi-beam bathymetry data processing using iterative algorithm of robust least squares collocation[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 658-665. DOI: .
doi: 10.11947/j.AGCS.2017.20160491 |
|
| [24] |
宿殿鹏, 闫豆豆, 陈亮, 等. 机载LiDAR测深点云SVB联合滤波算法[J]. 测绘学报, 2023, 52(4): 614-623. DOI: .
doi: 10.11947/j.AGCS.2023.20220248 |
|
SU Dianpeng, YAN Doudou, CHEN Liang, et al. Surface-volume-bottom joint-filtering algorithm for airborne LiDAR bathymetric point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 614-623. DOI: .
doi: 10.11947/j.AGCS.2023.20220248 |
|
| [25] | ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. |
| [26] | YANG Anxiu, WU Ziyin, YANG Fanlin, et al. Filtering of airborne LiDAR bathymetry based on bidirectional cloth simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 49-61. |
| [27] | QI C R, YI LI, SU Hao, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-02-01]. https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf. |
| [28] | ZHAO Hengshuang, JIANG Li, JIA Jiaya, et al. Point transformer[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16239-16248. |
| [29] | KOLODIAZHNYI M, VORONTSOVA A, KONUSHIN A, et al. OneFormer3D: one transformer for unified point cloud segmentation[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 20943-20953. |
| [30] | RAKOTOSAONA M J, LA BARBERA V, GUERRERO P, et al. PointCleanNet: learning to denoise and remove outliers from dense point clouds[J]. Computer Graphics Forum, 2020, 39(1): 185-203. |
| [31] | GUERRERO P, KLEIMAN Y, OVSJANIKOV M, et al. PCPNet learning local shape properties from raw point clouds[J]. Computer Graphics Forum, 2018, 37(2): 75-85. |
| [32] | HU Qingyong, YANG Bo, XIE Linhai, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11105-11114 |
| [33] | LI Ying, SHENG Huankun. A single-stage point cloud cleaning network for outlier removal and denoising[J]. Pattern Recognition, 2023, 138: 109366. |
| [34] | VO A V, TRUONG-HONG L, LAEFER D F, et al. Octree-based region growing for point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 88-100. |
| [35] | LALONDE J F, VANDAPEL N, HUBER D F, et al. Natural terrain classification using three-dimensional ladar data for ground robot mobility[J]. Journal of Field Robotics, 2006, 23(10): 839-861. |
| [36] |
董震, 杨必胜. 车载激光扫描数据中多类目标的层次化提取方法[J]. 测绘学报, 2015, 44(9): 980-987. DOI: .
doi: 10.11947/j.AGCS.2015.20140339 |
|
DONG Zhen, YANG Bisheng. Hierarchical extraction of multiple objects from mobile laser scanning data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 980-987. DOI: .
doi: 10.11947/j.AGCS.2015.20140339 |
|
| [37] | HÖFLE B, PFEIFER N. Correction of laser scanning intensity data: data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433. |
| [38] | 杨必胜, 董震. 点云智能处理[M]. 北京: 科学出版社, 2020: 38-39. |
| YANG Bisheng, DONG Zhen. Intelligent processing of point cloud[M]. Beijing: Science Press, 2020: 38-39. | |
| [39] | 杜松, 李晓辉, 刘照言, 等. 激光雷达回波强度数据辐射特性分析[J]. 中国科学院大学学报, 2019, 36(3): 392-400. |
| DU Song, LI Xiaohui, LIU Zhaoyan, et al. Radiometric characteristics of the intensity data of laser scanner[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(3): 392-400. | |
| [40] | 郭浩. 点云库PCL从入门到精通[M]. 北京: 机械工业出版社, 2019: 155-159. |
| GUO Hao. Point cloud library (PCL): from beginner to expert[M]. Beijing: China Machine Press, 2019: 155-159. | |
| [41] | 王永吉, 明艳芳, 梁天辰, 等. 基于改进LCCD算法的高分六号WFV数据云检测研究[J]. 光学学报, 2020, 40(21): 2128001. |
| WANG Yongji, MING Yanfang, LIANG Tianchen, et al. GF-6 WFV data cloud detection based on improved LCCD algorithm[J]. Acta Optica Sinica, 2020, 40(21): 2128001. |
| [1] | 李朋飞, 李豆, 胡晋飞, 姚顽强, 臧宇哲. 机载LiDAR监测黄土高原土壤侵蚀的能力评估[J]. 测绘学报, 2023, 52(8): 1342-1354. |
| [2] | 宿殿鹏, 闫豆豆, 陈亮, 陈雨, 董箭, 吴迪, 于孝林. 机载LiDAR测深点云SVB联合滤波算法[J]. 测绘学报, 2023, 52(4): 614-623. |
| [3] | 郭娇娇, 陈传法, 姚喜, 刘妍, 刘雅婷, 刘盼盼. 基于多特征聚类的复杂环境机载点云层次滤波方法[J]. 测绘学报, 2023, 52(10): 1724-1737. |
| [4] | 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. |
| [5] | 赵传, 郭海涛, 卢俊, 余东行, 林雨准, 姜怀刚. 结合区域增长与RANSAC的机载LiDAR点云屋顶面分割[J]. 测绘学报, 2021, 50(5): 621-633. |
| [6] | 沈定涛, 钱天陆, 夏煜, 陈蓓青, 张煜, 王结臣. 机载LiDAR数据提取堤防工程特征信息圆环探测法[J]. 测绘学报, 2021, 50(2): 203-214. |
| [7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
| [8] | 赵传, 郭海涛, 卢俊, 余东行, 张保明. 基于深度残差网络的机载LiDAR点云分类[J]. 测绘学报, 2020, 49(2): 202-213. |
| [9] | 潘锁艳, 管海燕. 机载多光谱LiDAR数据的地物分类方法[J]. 测绘学报, 2018, 47(2): 198-207. |
| [10] | 李永强, 董亚涵, 张西童, 李鹏鹏. 车载LiDAR点云路灯提取方法[J]. 测绘学报, 2018, 47(2): 247-259. |
| [11] | 何曼芸, 程英蕾, 邱浪波, 赵中阳. 一种改进顶帽变换与LBP高程纹理的城区建筑物提取算法[J]. 测绘学报, 2017, 46(9): 1116-1122. |
| [12] | 赵传, 张保明, 陈小卫, 郭海涛, 卢俊. 一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法[J]. 测绘学报, 2017, 46(9): 1123-1134. |
| [13] | 王滨辉, 宋沙磊, 龚威, 陈振威, 林鑫, 程学武, 李发泉, 史硕. 全波形激光雷达的波形优化分解算法[J]. 测绘学报, 2017, 46(11): 1859-1867. |
| [14] | 盛庆红, 陈姝文, 柳建锋, 王惠南. 基于Plücker直线的LiDAR点云配准法[J]. 测绘学报, 2016, 45(1): 58-64. |
| [15] | ZHANG Yongjun, XIONG Xiaodong, WANG Mengqiu, LU Yihui. A Fast Aerial Image Matching Method Using Airborne LiDAR Point Cloud and POS Data[J]. 测绘学报, 2015, 44(增刊): 0-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||