测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 840-852.doi: 10.11947/j.AGCS.2025.20240242

• 海洋测绘 • 上一篇    下一篇

镜像结构和强度特征约束的海岸带LiDAR点云多路径负异常点去除方法

高浩龙1,2(), 李邵波1,2,3(), 赵建虎4,5   

  1. 1.中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430078
    2.中国地质大学(武汉)区域生态过程与环境演变湖北省重点实验室,湖北 武汉 430074
    3.自然资源部海底科学重点实验室,浙江 杭州 310012
    4.武汉大学测绘学院,湖北 武汉 430079
    5.武汉大学海洋研究院,湖北 武汉 430079
  • 收稿日期:2024-06-17 修回日期:2025-03-27 出版日期:2025-06-23 发布日期:2025-06-23
  • 通讯作者: 李邵波 E-mail:1202321101@cug.edu.cn;lishaobo@cug.edu.cn
  • 作者简介:高浩龙(2001—),男,硕士生,研究方向为海洋测绘。E-mail:1202321101@cug.edu.cn
  • 基金资助:
    国家自然科学基金(42304049);湖北省自然科学基金(2023AFB017);中国博士后科学基金(2023M743282);自然资源部海洋环境探测技术与应用重点实验室开放基金(MESTA-2022-B007);自然资源部海底科学重点实验室开放基金(KLSG2406)

Multipath negative outlier removal method for coastal LiDAR point clouds based on mirror structure and intensity feature constraints

Haolong GAO1,2(), Shaobo LI1,2,3(), Jianhu ZHAO4,5   

  1. 1.School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
    2.Hubei Key Laboratory of Regional Ecology and Environmental Change, China University of Geosciences, Wuhan 430074, China
    3.Key Laboratory of Submarine Geosciences, Ministry of Natural Resources, Hangzhou 310012, China
    4.School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    5.Institute of Marine Science and Technology, Wuhan University, Wuhan 430079, China
  • Received:2024-06-17 Revised:2025-03-27 Online:2025-06-23 Published:2025-06-23
  • Contact: Shaobo LI E-mail:1202321101@cug.edu.cn;lishaobo@cug.edu.cn
  • About author:GAO Haolong (2001—), male, postgraduate, majors in marine surveying and mapping. E-mail: 1202321101@cug.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42304049);Hubei Provincial Natural Science Foundation of China(2023AFB017);China Postdoctoral Science Foundation(2023M743282);The Key Laboratory of Marine Environmental Detection Technology and Application, Ministry of Natural Resources(MESTA-2022-B007);The Key Laboratory of Submarine Geosciences, Ministry of Natural Resources(KLSG2406)

摘要:

气垫船载激光雷达扫描系统可以实现海岸带点云数据获取,但其数据质量受多路径效应引起的负异常点影响,限制了后续应用。本文针对该类异常点的形成机制,提出了一种基于镜像结构和强度特征约束的多路径负异常点去除方法。该方法首先通过区域生长和二次最小二乘拟合获取镜像面;然后,对区域生长得到的点云簇进行几何结构和强度特征的描述;最后,基于镜像面,在镜像空间内建立点云簇的几何结构和强度特征的对应关系,从而识别并剔除具有镜像特征的负异常点。试验结果显示,本文方法在去除海岸带滩涂地形中的负异常点时,精准率和召回率分别达到了90.83%和76.05%,有效实现了负异常点去除,并在较大程度上保留了地形特征,在需要高精度去噪的场景中,提升了后续数据应用的可靠性。

关键词: 海岸带地形, LiDAR, 多路径效应, 负异常点去除, 镜像关系

Abstract:

The hovercraft-mounted LiDAR scanning system can acquire coastal zone point cloud data. However, the quality of the data is affected by negative outliers caused by the multipath effects, which limits its wide applications. This paper studied the formation mechanism of such outliers and proposed a negative outlier removal method based on mirror structure and intensity feature constraints. First, a mirror surface was obtained using the region growing and quadratic least squares fitting method. The geometric structure and intensity features of the point cloud clusters identified through region growing were then characterized. After that, using the mirror surface, the relationship of the geometric and intensity features of the point cloud clusters within the same mirror space was established. This relationship facilitated the identification and removal of negative outliers exhibiting mirror characteristics. Experimental results showed that the proposed method achieved a precision of 90.83% and a recall of 76.05% in removing negative outliers from coastal tidal flats. The method can effectively eliminate negative outliers while preserving terrain features, thereby enhancing the reliability of point cloud data for high-precision noise reduction in subsequent applications.

Key words: coastal terrain, LiDAR, multipath effects, negative outlier removal, mirror relationship

中图分类号: