测绘学报 ›› 2014, Vol. 43 ›› Issue (12): 1238-1244.doi: 10.13485/j.cnki.11-2089.2014.0188

• 学术论文 • 上一篇    下一篇

激光测绘卫星对不同地表形貌探测能力分析

李鑫, 廖鹤, 赵美玲, 周文龙, 曹水艳, 周世宏   

  1. 上海卫星工程研究所, 上海 200240
  • 收稿日期:2014-02-08 修回日期:2014-08-14 出版日期:2014-12-20 发布日期:2014-12-23
  • 作者简介:李鑫(1983-),女,博士,工程师,研究方向为激光载荷类卫星总体技术.cammilee@163.com
  • 基金资助:
    国家自然科学基金(11302132)

Research on LiDAR Surveying Satellite Detection Capacity for Different Terrains

LI Xin, LIAO He, ZHAO Meiling, ZHOU Wenlong, CAO Shuiyan, ZHOU Shihong   

  1. Shanghai Institute of Satellite Engineering, Shanghai 200240, China
  • Received:2014-02-08 Revised:2014-08-14 Online:2014-12-20 Published:2014-12-23

摘要: 针对斜坡地形、台阶地形和植被地貌、分界地貌建立了4种基本模型,研究了不同的地表空间起伏和反射率分布对回波信号时空分布特性的影响,并采用蒙特卡罗方法仿真了4种模型下Geiger探测模式星载激光雷达的高程测量精度,发现:地形起伏主要影响回波信号的时间分布特性,统计条件下可以消除测量误差;回波信号空间分布特性变化主要由地貌(反射率)的变化引起,误差较小可以忽略.研究结果表明:激光三维测绘卫星对垂直陡变地形(如城市建筑)、斜坡地形(如山坡)、分界地貌(如水陆分界)和折射率起伏地貌(如植被地貌等)具有良好的探测能力.

关键词: 激光测绘, 卫星, 地表形貌, 台阶, 斜坡, 反射率, 蒙特卡罗方法

Abstract: Four basic models have been established in view of the slope terrain, the step and platform terrain, the vegetation terrain as well as the dividing terrain and research is focused on exploring the effect of irregular topography and distribution of reflectance on the spatial and temporal distribution of echo signal. Additionally, Monte-Carlo Method has been employed to simulate measuring accuracy of LiDAR Geiger mode detection under the four models. Through the numerical simulation, it is found that irregular topography mainly affects the time distribution of echo pulse and error can be eliminated under the statistics condition; the change of the distribution of echo signal is mainly caused by the variation of the landscape, so small error can be ignored. Such results prove that 3D Laser Surveying Satellite is advantageous to the detection over different landforms and physiognomy, such as architectures, hills, boundary zones and vegetative cover.

Key words: LiDAR surveying, satellite, geography and geomorphology, stepped terrain, slope terrain, reflectivity, Monte-Carlo method

中图分类号: