测绘学报 ›› 2020, Vol. 49 ›› Issue (2): 245-255.doi: 10.11947/j.AGCS.2020.20190280
安晓亚1,2, 成晓强3
收稿日期:
2019-07-01
修回日期:
2019-10-18
发布日期:
2020-03-03
通讯作者:
成晓强
E-mail:carto@hubu.edu.cn
作者简介:
安晓亚(1982-),男,副研究员,主要从事地图学与地理信息系统方面研究。E-mail:xya2001@tom.com
基金资助:
AN Xiaoya1,2, CHENG Xiaoqiang3
Received:
2019-07-01
Revised:
2019-10-18
Published:
2020-03-03
Supported by:
摘要: 互联网用户参与的地图制图容易出现视觉冲突、压盖、拥挤等地图表达问题,需要引入地图自动综合协助解决。网络地图中由于原图比例尺和综合后比例尺均难以准确量化,常规地图自动综合基于"原图比例尺-综合后比例尺"判断是否需要综合的方法已不再适用。矢量数据在可视化后会产生视觉粘连,视觉粘连越明显,地图表达效果越差,综合的需求也越强烈。基于此规律,本文提出对视觉粘连进行定量描述并据此判断是否需要综合。首先,从人类视觉感受出发,结合栅格化思想设计了矢量曲线视觉粘连的量化指标——视觉清晰度。然后,基于"金字塔式"的尺度空间计算曲线在多个比例尺表达的清晰度,并拟合了清晰度的变化函数。最后,将该函数应用于众源地理数据的网络地图综合决策。试验结果表明,本文方法可准确判断每条矢量曲线是否需要综合,能有效解决地理数据尺度异质性带来的可视化难题。同时,清晰度变化函数将曲线的尺度描述由静态数值扩展到连续函数,有望更好地支持多尺度空间数据处理及网络地图综合等问题。
中图分类号:
安晓亚, 成晓强. 矢量曲线的视觉清晰度及在网络地图综合中的应用[J]. 测绘学报, 2020, 49(2): 245-255.
AN Xiaoya, CHENG Xiaoqiang. Visual clarity of vector curve and its application in web map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 245-255.
[1] TOUYA G, HOARAU C, CHRISTOPHE S. Clutter and map legibility in automated cartography:a research agenda[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2016, 51(4):198-207. [2] HARRIE L, MUSTIōRE S, STIGMAR H. Cartographic quality issues for view services in Geoportals[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2011, 46(2):92-100. [3] 艾廷华, 郭宝辰, 黄亚峰. 1:5万地图数据库的计算机综合缩编[J]. 武汉大学学报(信息科学版), 2005, 30(4):297-300. AI Tinghua, GUO Baochen, HUANG Yafeng. Construction of 1:50000 map database by computer generalization method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4):297-300. [4] RAPOSO P. Scale and generalization[M]//WILSON J P. The Geographic Information Science & Technology Body of Knowledge. US:UCGIS, 2017. [5] 杨敏, 艾廷华, 卢威, 等. 自发地理信息兴趣点数据在线综合与多尺度可视化方法[J]. 测绘学报, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. YANG Min, AI Tinghua, LU Wei, et al. A real-time generalization and multi-scale visualization method for POI data in volunteered geographic information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. [6] BEREUTER P, WEIBEL R. Real-time generalization of point data in mobile and web mapping using quadtrees[J]. Cartography and Geographic Information Science, 2013, 40(4):271-281. [7] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [8] REICHENBACHER T. Mobile usage and adaptive visualization[M]//SHEKHAR S, XIONG H. Encyclopedia of GIS. Boston:Springer, 2008:677-682. [9] TOUYA G, BRANDO-ESCOBAR C. Detecting Level-of-Detail Inconsistencies in Volunteered Geographic Information Data Sets[J]. Cartographica:the International Journal for Geographic Information and Geovisualization, 2013, 48(2):134-143. [10] SESTER M, JOKAR ARSANJANI J, KLAMMER R, et al. Integrating and generalising volunteered geographic information[M]//BURGHARDT D, DUCHêNE C, MACKANESS W. Abstracting Geographic Information in a Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:119-155. [11] STAUFFER A J, WEBINGER S, ROCHE B. Enriching the national map database for multi-scale use:Introducing the visibilityfilter attribution[C]//Proceedings of the 19th International Research Symposium on Computer-Based Cartography. Albuquerque, New Mexico:USGS, 2016. [12] BILJECKI F, LEDOUX H, STOTER J, et al. Formalisation of the level of detail in 3D city modelling[J]. Computers, Environment and Urban Systems, 2014, 48:1-15. [13] TOUYA G, REIMER A. Inferring the scale of OpenStreetMap features[M]//JOKAR ARSANJANI J, ZIPF A, MOONEY P, et al. OpenStreetMap in GIScience:Experiences, Research, and Applications. Cham:Springer, 2015:81-99. [14] SHEA K S, MCMASTER R B. Cartographic generalization in a digital environment:when and how to generalize[C]//Proceedings of the 9th International Symposium on Computer-Assisted Cartography. Baltimore:[s.n.], 1989. [15] MUSTIERE S. Cartographic generalization of roads in a local and adaptive approach:a knowledge acquistion problem[J]. International Journal of Geographical Information Science, 2005, 19(8-9):937-955. [16] SKOPELITI A, TSOULOS L. On the Parametric Description of the Shape of the Cartographic Line[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1999, 36(3):53-65. [17] UNI-ZH. Selection of basic measures[R].[S.l.]:AGENT, 2001. [18] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. New York:CRC Press, 2006. [19] FOLEY J D, VAN DAM A, FEINER S K, et al. Introduction to computer graphics[M]. Boston:Addison-Wesley Professional, 1993. [20] OPENSTREETMAP. Slippy map tilenames[EB/OL]. (2017-05-07)[2018-05-30]. http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale. [21] MICROSOFT. Bing maps tile system[EB/OL]. (2017-05-30)[2018-05-30]. https://msdn.microsoft.com/en-us/library/bb259689.aspx. [22] 梅洋, 李霖, 贺彪. 基于边界反走样算法的地图可视化研究[J]. 武汉大学学报(信息科学版), 2008, 33(7):759-761. MEI Yang, LI Lin, HE Biao. Cartographic visualization based on boundary anti-aliasing[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):759-761. [23] OGC. OGC 06-103r4 OpenGIS® implementation standard for geographic information-simple feature access-part 1:common architecture[S]. Wayland:OGC, 2011. [24] HARRIE L, STIGMAR H, DJORDJEVIC M. Analytical estimation of map readability[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):418-446. [25] STOTER J, ZHANG Xiang, STIGMAR H, et al. Evaluation in generalisation[M]//BURGHARDT D, DUCHȆNE C, MACKANESS W. Abstracting Geographic Information in A Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:259-297. |
[1] | 刘经南, 罗亚荣, 郭迟, 高柯夫. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
[2] | 韩李涛, 周丽娟, 龚城, 张爱国. 顾及步行习惯的室内导航网络及其生成算法[J]. 测绘学报, 2022, 51(5): 729-738. |
[3] | 方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5): 739-749. |
[4] | 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[J]. 测绘学报, 2022, 51(5): 784-784. |
[5] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[6] | 朱庆, 冯斌, 李茂粟, 陈媚特, 徐肇文, 谢潇, 张叶廷, 刘铭崴, 黄志勤, 冯义从. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. |
[7] | 陆川伟, 孙群, 陈冰, 温伯威, 赵云鹏, 徐立. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6): 692-702. |
[8] | 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. |
[9] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[10] | 郭庆胜, 刘洋, 李萌, 程晓茜, 何捷, 王慧慧, 魏智威. 基于网格模型的导航道路图渐进式化简方法[J]. 测绘学报, 2019, 48(11): 1357-1368. |
[11] | 吴政, 武鹏达, 李成名. 对等网络下自适应层级的矢量数据时空索引构建方法[J]. 测绘学报, 2019, 48(11): 1369-1379. |
[12] | 王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390. |
[13] | 万子健, 李连营, 杨敏, 周校东. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403. |
[14] | 胡光辉, 熊礼阳, 汤国安. DEM地表坡向变率的向量几何计算法[J]. 测绘学报, 2019, 48(11): 1404-1414. |
[15] | 张旭, 郝向阳, 李建胜, 李朋月. 监控视频中动态目标与地理空间信息的融合与可视化方法[J]. 测绘学报, 2019, 48(11): 1415-1423. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||