测绘学报 ›› 2020, Vol. 49 ›› Issue (2): 235-244.doi: 10.11947/j.AGCS.2020.20190272

• 摄影测量学与遥感 • 上一篇    下一篇

结合随机森林面向对象的森林资源分类

王猛1, 张新长1,3, 王家耀2,3, 孙颖4, 箭鸽1, 潘翠红1   

  1. 1. 广州大学地理科学学院, 广东 广州 510006;
    2. 河南省时空大数据产业技术研究院, 河南 郑州 450018;
    3. 河南大学环境与规划学院, 河南 开封 475004;
    4. 中山大学地理科学与规划学院, 广东 广州 510275
  • 收稿日期:2019-06-27 修回日期:2019-11-25 发布日期:2020-03-03
  • 通讯作者: 张新长 E-mail:eeszxc@mail.sysu.edu.cn
  • 作者简介:王猛(1994-),男,硕士生,研究方向为遥感信息提取、基础地理空间数据更新。E-mail:wangmcug@163.com
  • 基金资助:
    国家重点研发计划(2018YFB2100702);国家自然科学基金重点项目(41431178);广东省自然科学基金重点项目(2016A030311016);智慧广州时空信息云平台建设项目(GZIT2016-A5-147);河南省时空大数据产业技术研究院资助项目(2017DJA001);中央高校基本科研业务费专项资金(19lgpy44)

Forest resource classification based on random forest and object oriented method

WANG Meng1, ZHANG Xinchang1,3, WANG Jiayao2,3, SUN Ying4, JIAN Ge1, PAN Cuihong1   

  1. 1. School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China;
    2. Research Institute of Henan Spatio-Temporal Big Data Industrial Technology, Zhengzhou 450018, China;
    3. The College of Environment and Planning, Henan University, Kaifeng 475004, China;
    4. Department of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2019-06-27 Revised:2019-11-25 Published:2020-03-03
  • Supported by:
    The National Key R & D Program of China (No. 2018YFB2100702);The Key Program of the National Natural Science Foundation of China (No. 41431178);The Key Program of the Natural Science Foundation of Guangdong Province (No. 2016A030311016);The Smart Guangzhou Spatiotemporal Infomation Cloud Platform Project (No. GZIT2016-A5-147);Supported by the Research Institute of Henan Spatio-Temporal Big Data Industrial Technology(2017DJA001);The Fundamental Research Funds for the Central Universities (No. 19lgpy44)

摘要: 针对森林资源分类研究较少且缺少相对简单有效的方法的情况,提出一种结合面向对象和随机森林的森林资源分类方法。面向对象分割技术可减少"椒盐效应",随机森林分类算法具有高准确度、抗噪声能力强、性能稳定等优势。鉴于此,通过调整面向对象的分割参数,构造最优特征空间及估算随机森林中决策树的数量等,构建了最优的面向对象随机森林分类模型。另外,选择了SVM算法作对比试验。试验结果显示,本文分类算法的总体精度达到83.34%,Kappa系数为0.789 2,明显高于SVM,能够有效提高森林资源分类的精度。

关键词: 森林资源分类, 面向对象方法, 随机森林

Abstract: Given that there are few studies on forest resource classification with the lack of relatively simple and effective methods, a forest resource classification method integrating object-oriented segmentation and random forest is proposed in this paper. Object-oriented segmentation technology could efficiently reduce the "salt and pepper effect", and random forest classification algorithm has the advantages of high accuracy, strong anti-noise ability and satisfying stability. Therefore, we built the optimum random forest classification model by adjusting the object-oriented segmentation parameters, constructing the optimal feature space and estimating the number of decision trees in random forests. Besides, the SVM algorithm is taken into comparison. The results show that the overall accuracy of the classification algorithm in this study is 83.34%with the Kappa coefficient reaching 0.789 2, which are significantly higher than that of SVM algorithm. It proves that object-oriented random forest classification can effectively improve the accuracy of forest resource classification.

Key words: forest resource classification, object-oriented method, random forest

中图分类号: