
测绘学报 ›› 2020, Vol. 49 ›› Issue (2): 245-255.doi: 10.11947/j.AGCS.2020.20190280
安晓亚1,2, 成晓强3
收稿日期:2019-07-01
修回日期:2019-10-18
发布日期:2020-03-03
通讯作者:
成晓强
E-mail:carto@hubu.edu.cn
作者简介:安晓亚(1982-),男,副研究员,主要从事地图学与地理信息系统方面研究。E-mail:xya2001@tom.com
基金资助:AN Xiaoya1,2, CHENG Xiaoqiang3
Received:2019-07-01
Revised:2019-10-18
Published:2020-03-03
Supported by:摘要: 互联网用户参与的地图制图容易出现视觉冲突、压盖、拥挤等地图表达问题,需要引入地图自动综合协助解决。网络地图中由于原图比例尺和综合后比例尺均难以准确量化,常规地图自动综合基于"原图比例尺-综合后比例尺"判断是否需要综合的方法已不再适用。矢量数据在可视化后会产生视觉粘连,视觉粘连越明显,地图表达效果越差,综合的需求也越强烈。基于此规律,本文提出对视觉粘连进行定量描述并据此判断是否需要综合。首先,从人类视觉感受出发,结合栅格化思想设计了矢量曲线视觉粘连的量化指标——视觉清晰度。然后,基于"金字塔式"的尺度空间计算曲线在多个比例尺表达的清晰度,并拟合了清晰度的变化函数。最后,将该函数应用于众源地理数据的网络地图综合决策。试验结果表明,本文方法可准确判断每条矢量曲线是否需要综合,能有效解决地理数据尺度异质性带来的可视化难题。同时,清晰度变化函数将曲线的尺度描述由静态数值扩展到连续函数,有望更好地支持多尺度空间数据处理及网络地图综合等问题。
中图分类号:
安晓亚, 成晓强. 矢量曲线的视觉清晰度及在网络地图综合中的应用[J]. 测绘学报, 2020, 49(2): 245-255.
AN Xiaoya, CHENG Xiaoqiang. Visual clarity of vector curve and its application in web map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 245-255.
| [1] TOUYA G, HOARAU C, CHRISTOPHE S. Clutter and map legibility in automated cartography:a research agenda[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2016, 51(4):198-207. [2] HARRIE L, MUSTIōRE S, STIGMAR H. Cartographic quality issues for view services in Geoportals[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2011, 46(2):92-100. [3] 艾廷华, 郭宝辰, 黄亚峰. 1:5万地图数据库的计算机综合缩编[J]. 武汉大学学报(信息科学版), 2005, 30(4):297-300. AI Tinghua, GUO Baochen, HUANG Yafeng. Construction of 1:50000 map database by computer generalization method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4):297-300. [4] RAPOSO P. Scale and generalization[M]//WILSON J P. The Geographic Information Science & Technology Body of Knowledge. US:UCGIS, 2017. [5] 杨敏, 艾廷华, 卢威, 等. 自发地理信息兴趣点数据在线综合与多尺度可视化方法[J]. 测绘学报, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. YANG Min, AI Tinghua, LU Wei, et al. A real-time generalization and multi-scale visualization method for POI data in volunteered geographic information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. [6] BEREUTER P, WEIBEL R. Real-time generalization of point data in mobile and web mapping using quadtrees[J]. Cartography and Geographic Information Science, 2013, 40(4):271-281. [7] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [8] REICHENBACHER T. Mobile usage and adaptive visualization[M]//SHEKHAR S, XIONG H. Encyclopedia of GIS. Boston:Springer, 2008:677-682. [9] TOUYA G, BRANDO-ESCOBAR C. Detecting Level-of-Detail Inconsistencies in Volunteered Geographic Information Data Sets[J]. Cartographica:the International Journal for Geographic Information and Geovisualization, 2013, 48(2):134-143. [10] SESTER M, JOKAR ARSANJANI J, KLAMMER R, et al. Integrating and generalising volunteered geographic information[M]//BURGHARDT D, DUCHêNE C, MACKANESS W. Abstracting Geographic Information in a Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:119-155. [11] STAUFFER A J, WEBINGER S, ROCHE B. Enriching the national map database for multi-scale use:Introducing the visibilityfilter attribution[C]//Proceedings of the 19th International Research Symposium on Computer-Based Cartography. Albuquerque, New Mexico:USGS, 2016. [12] BILJECKI F, LEDOUX H, STOTER J, et al. Formalisation of the level of detail in 3D city modelling[J]. Computers, Environment and Urban Systems, 2014, 48:1-15. [13] TOUYA G, REIMER A. Inferring the scale of OpenStreetMap features[M]//JOKAR ARSANJANI J, ZIPF A, MOONEY P, et al. OpenStreetMap in GIScience:Experiences, Research, and Applications. Cham:Springer, 2015:81-99. [14] SHEA K S, MCMASTER R B. Cartographic generalization in a digital environment:when and how to generalize[C]//Proceedings of the 9th International Symposium on Computer-Assisted Cartography. Baltimore:[s.n.], 1989. [15] MUSTIERE S. Cartographic generalization of roads in a local and adaptive approach:a knowledge acquistion problem[J]. International Journal of Geographical Information Science, 2005, 19(8-9):937-955. [16] SKOPELITI A, TSOULOS L. On the Parametric Description of the Shape of the Cartographic Line[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1999, 36(3):53-65. [17] UNI-ZH. Selection of basic measures[R].[S.l.]:AGENT, 2001. [18] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. New York:CRC Press, 2006. [19] FOLEY J D, VAN DAM A, FEINER S K, et al. Introduction to computer graphics[M]. Boston:Addison-Wesley Professional, 1993. [20] OPENSTREETMAP. Slippy map tilenames[EB/OL]. (2017-05-07)[2018-05-30]. http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale. [21] MICROSOFT. Bing maps tile system[EB/OL]. (2017-05-30)[2018-05-30]. https://msdn.microsoft.com/en-us/library/bb259689.aspx. [22] 梅洋, 李霖, 贺彪. 基于边界反走样算法的地图可视化研究[J]. 武汉大学学报(信息科学版), 2008, 33(7):759-761. MEI Yang, LI Lin, HE Biao. Cartographic visualization based on boundary anti-aliasing[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):759-761. [23] OGC. OGC 06-103r4 OpenGIS® implementation standard for geographic information-simple feature access-part 1:common architecture[S]. Wayland:OGC, 2011. [24] HARRIE L, STIGMAR H, DJORDJEVIC M. Analytical estimation of map readability[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):418-446. [25] STOTER J, ZHANG Xiang, STIGMAR H, et al. Evaluation in generalisation[M]//BURGHARDT D, DUCHȆNE C, MACKANESS W. Abstracting Geographic Information in A Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:259-297. |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||