测绘学报 ›› 2020, Vol. 49 ›› Issue (2): 245-255.doi: 10.11947/j.AGCS.2020.20190280

• 地图学与地理信息 • 上一篇    下一篇

矢量曲线的视觉清晰度及在网络地图综合中的应用

安晓亚1,2, 成晓强3   

  1. 1. 西安测绘研究所, 陕西 西安 710054;
    2. 地理信息工程国家重点实验室, 陕西 西安 710054;
    3. 湖北大学资源环境学院, 湖北 武汉 430062
  • 收稿日期:2019-07-01 修回日期:2019-10-18 发布日期:2020-03-03
  • 通讯作者: 成晓强 E-mail:carto@hubu.edu.cn
  • 作者简介:安晓亚(1982-),男,副研究员,主要从事地图学与地理信息系统方面研究。E-mail:xya2001@tom.com
  • 基金资助:
    国家自然科学基金(41501443);区域开发与环境响应湖北省重点实验室开放研究基金资助项目

Visual clarity of vector curve and its application in web map generalization

AN Xiaoya1,2, CHENG Xiaoqiang3   

  1. 1. Xi'an Research Instituteof Surveying and Mapping, Xi'an 710054, China;
    2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
    3. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
  • Received:2019-07-01 Revised:2019-10-18 Published:2020-03-03
  • Supported by:
    The National Natural Science Foundation of China (No. 41501443);The Open Fund of Hubei Key Laboratory of Regional Development and Environmental Response

摘要: 互联网用户参与的地图制图容易出现视觉冲突、压盖、拥挤等地图表达问题,需要引入地图自动综合协助解决。网络地图中由于原图比例尺和综合后比例尺均难以准确量化,常规地图自动综合基于"原图比例尺-综合后比例尺"判断是否需要综合的方法已不再适用。矢量数据在可视化后会产生视觉粘连,视觉粘连越明显,地图表达效果越差,综合的需求也越强烈。基于此规律,本文提出对视觉粘连进行定量描述并据此判断是否需要综合。首先,从人类视觉感受出发,结合栅格化思想设计了矢量曲线视觉粘连的量化指标——视觉清晰度。然后,基于"金字塔式"的尺度空间计算曲线在多个比例尺表达的清晰度,并拟合了清晰度的变化函数。最后,将该函数应用于众源地理数据的网络地图综合决策。试验结果表明,本文方法可准确判断每条矢量曲线是否需要综合,能有效解决地理数据尺度异质性带来的可视化难题。同时,清晰度变化函数将曲线的尺度描述由静态数值扩展到连续函数,有望更好地支持多尺度空间数据处理及网络地图综合等问题。

关键词: 网络地图综合, 视觉粘连, 视觉清晰度, 清晰度变化函数, 空间粒度

Abstract: Public participatory map making is prone to visual problems such as visual coalescence, overcrowding, and crowdedness, which are only solved by automatic map generalization. Since both the original map scale and the target map scale are sometimes difficult to quantify accurately in the map, it is no longer applicable that the conventional map generalization method is based on the "original-target map scale" to judge whether or not the map generalization is needed. After visualizing the vector data, it will produce visual coalescence, the more noticeable the coalescence is, the worse the map representation is, and the more comprehensive the generalization demand is. Based on this rule, this paper proposes a quantitative description of visual coalescence and judges whether or not map generalization is needed. First of all, from the perspective of human visual perception, we designed a quantitative indicator of visual coalescence of vector curves-visual clarity. Then, based on the "pyramid" scale space, the clarity of the curve expressed in multiple scales is calculated, and the change function of the clarity is fitted. The experiment applies this function to web map generalization decisions for VGI geographic data. Experimental results show that this method can accurately determine whether each vector curve needs to be generalized, and can effectively solve the visual problems brought by the heterogeneity of geographic scale. At the same time, the clarity change function expands the scale description of the curve from a static value to a continuous function, which is expected to better support multi-scale spatial data processing and web map generalization.

Key words: web map generalization, coalescence, visual clarity, clarity function, spatial granularit

中图分类号: