测绘学报 ›› 2021, Vol. 50 ›› Issue (11): 1574-1584.doi: 10.11947/j.AGCS.2021.20210205

• 智能驾驶环境感知 • 上一篇    下一篇

面向智能车的地下停车场环视特征地图构建与定位

周哲1,2, 胡钊政1,2, 李娜3, 肖汉彪1, 伍锦祥1   

  1. 1. 武汉理工大学智能交通系统研究中心, 湖北 武汉 430063;
    2. 武汉理工大学重庆研究院, 重庆 401120;
    3. 武汉理工大学自动化学院, 湖北 武汉 430070
  • 收稿日期:2021-04-22 修回日期:2021-09-23 发布日期:2021-12-07
  • 通讯作者: 胡钊政 E-mail:zzhu@whut.edu.cn
  • 作者简介:周哲(1990—),男,博士生,研究方向为高精度视觉地图构建与导航。
  • 基金资助:
    国家重点研发计划(2018YFB1600801);国家自然科学基金(U1764262);重庆市自然科学基金(cstc2020jcyj-msxmX0978);武汉市科技局技术创新项目(2020010601012165;2020010602011973;2020010602012003)

Visual map from around view system for intelligent vehicle localization in underground parking lots

ZHOU Zhe1,2, HU Zhaozheng1,2, LI Na3, XIAO Hanbiao1, WU Jinxiang1   

  1. 1. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China;
    2. Chongqing Research Institute of Wuhan University of Technology, Chongqing 401120, China;
    3. School of Automation, Wuhan University of Technology, Wuhan 430070, China
  • Received:2021-04-22 Revised:2021-09-23 Published:2021-12-07
  • Supported by:
    The National Key Research and Development Program of China (No. 2018YFB1600801);The National Natural Science Foundation of China (No. U1764262);The National Natural Science Foundation of Chongqing of China (No. cstc2020jcyj-msxmX0978);The Funding of Wuhan Science and Technology Bureau (Nos. 2020010601012165;2020010602011973;2020010602012003)

摘要: 针对地下停车场环境GPS信号缺失的问题,本文在环视特征地图构建的基础上,提出基于二阶马尔科夫模型的粒子滤波定位算法(Markov model-particle filter,MM-PF),实现智能车在地下停车场环境中的高精度定位。在该模型中,环视特征地图节点被定义为粒子,查询图像被定义为观测数据。在状态转移过程中,引入二阶马尔可夫模型,对短时间车辆运动进行建模,构建状态转移模型。利用图像的全局特征建立当前车辆获取的图像与各粒子(环视地图节点)之间的匹配关系,从获取的汉明距离建立粒子权重分布模型,可以大幅提高系统的计算效率。当前车辆的位置由局部特征匹配获得。选取两个典型的地下停车场场景对本文算法进行验证,在选取的两个场景中,本文算法平均定位精度小于0.38 m,定位误差均方差小于0.29 m,定位误差在1 m以下的概率不低于95.4%。试验结果表明:本文所提出的二阶MM-PF算法能够将车辆的运动信息与视觉信息相融合,相较于对比算法,定位精度与稳健性得到大幅提高。

关键词: 智能车, 视觉定位, 二阶马尔可夫模型, 粒子滤波算法

Abstract: In view of the lack of GPS signal in the underground parking lots, the second-order Markov model and particle filter (MM-PF) method for intelligent vehicle localization in underground parking lots is proposed based on the construction of a visual feature map from around view. In the method, the nodes of the visual feature map are defined as particles, while the query images are defined as observation data. In the process of state transition, the second-order Markov model is introduced to model the motion of the vehicles in a short time. In addition, holistic features are employed to establish the matching relationship between the query image and each particle (visual feature map node) by assigning particle weights based on Hamming distance. In the experiments, two typical underground parking lots are selected to verify the method. In both scenarios, the mean error of localization is less than 0.38 m, the mean square error is less than 0.29 m. The probability of positioning error below 1 m is not less than 95.4%. Experimental results demonstrate that the proposed method can integrate both the motion and visual features to enhance localization performance. Experimental results also show that the proposed method outperforms state-of-the-art ones in terms of localization accuracy and robustness.

Key words: intelligent vehicle, vision localization, second-order Markov model, particle filter algorithm

中图分类号: