测绘学报 ›› 2021, Vol. 50 ›› Issue (12): 1639-1649.doi: 10.11947/j.AGCS.2021.20200286

• 位置服务与地理空间信息处理 •    下一篇

结合感知哈希与空间约束的室内连续视觉定位方法

张星1,2,3, 林静1,2,3, 李清泉1,2,3, 刘涛4, 方志祥5   

  1. 1. 深圳大学广东省城市空间信息工程重点实验室, 广东 深圳 518060;
    2. 深圳大学自然资源部大湾区地理环境监测重点实验室, 广东 深圳 518060;
    3. 深圳大学空间信息智能感知与服务深圳市重点实验室, 广东 深圳 518060;
    4. 河南财经政法大学资源与环境学院, 河南 郑州 450002;
    5. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
  • 收稿日期:2020-06-28 修回日期:2021-03-23 发布日期:2022-01-08
  • 通讯作者: 李清泉 E-mail:liqq@szu.edu.cn
  • 作者简介:张星(1982—),男,博士,研究员,研究方向为室内定位和行人导航。
  • 基金资助:
    国家自然科学基金(42071434;41801376;41771473);广东省自然科学基金(2018A030313289);深圳市科技创新委员会基础研究项目(JCYJ20180305125033478;JCYJ20170818144544900);中国博士后科学基金(2020M682293)

Continuous indoor visual localization using a perceptual Hash algorithm and spatial constraint

ZHANG Xing1,2,3, LIN Jing1,2,3, LI Qingquan1,2,3, LIU Tao4, FANG Zhixiang5   

  1. 1. Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China;
    2. MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, Shenzhen 518060, China;
    3. Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen 518060, China;
    4. College of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450002, China;
    5. State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2020-06-28 Revised:2021-03-23 Published:2022-01-08
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42071434;41801376;41771473);The Natural Science Foundation of Guangdong Province (No. 2018A030313289);The Shenzhen Scientific Research and Development Funding Program (Nos. JCYJ20180305125033478;JCYJ20170818 144544900);The China Postdoctoral Science Foundation (No. 2020M682293)

摘要: 视觉定位主要通过相机视觉信息与环境视觉特征的匹配实现位置计算。然而视觉匹配计算量较大,难以支持室内连续定位。对于视觉数据稀疏的环境,单纯依靠视觉匹配也难以实现连续的轨迹定位。针对这一问题,本文提出一种结合感知哈希与空间约束的室内连续视觉定位方法,通过智能手机采集的连续视频帧与室内图像数据集的匹配,实现精确的视觉定位。为改进视觉匹配效率,构建了一种双层次的匹配图像搜索策略,包括基于感知哈希方法的全局搜索策略和顾及运动连续性的局部搜索策略。在此基础上,设计了一种室内连续视觉定位算法,结合视觉匹配与航位推算提高视觉定位的空间连续性,并利用运动恢复结构方法提高航向角估计精度。试验结果表明,本文方法在图像匹配定位、连续离线定位、连续在线定位模式下的平均定位误差分别为0.70、0.86和0.93 m,能够达到亚米级定位精度。在线定位模式下,本文方法的平均计算时间为0.42 s,能够支持连续的视觉定位。

关键词: 室内定位, 视觉定位, 图像匹配, 感知哈希, 运动恢复结构

Abstract: Visual localization achieves indoor localization by matching visual data (collected by camera) with visual features of an environment. However, visual feature matching requires a long computation time, which makes it difficult to provide a continuous localization result. Besides, for environment with sparse visual data (e.g. images), it is also difficult to achieve continuous indoor localization using only visual feature matching. To solve this problem, this study proposes a continuous indoor localization approach using perceptual Hash algorithm (pHash) and spatial-constrained image searching strategies. It realizes accurate indoor localization by matching the collected video frames (from smartphone) with the images from a generated indoor image dataset. To improve the efficiency of visual feature matching, a two-level image searching and matching strategy is designed, including a pHash-based global searching strategy and a local strategy considering motion continuity. Based on the two-level strategy, a continuous indoor visual localization algorithm is proposed, which can increase the spatial continuity of localization result by integrating both visual localization and dead reckoning. Besides, this algorithm employs a structure from motion method to improve its heading estimation accuracy. Experimental results show that the localization errors of the image querying, continuous offline localization and online localization of this method are approximately 0.70, 0.86 and 0.93 m, respectively, which achieves sub-meter level localization accuracy. In the online localization condition, its average computation time is about 0.42 s, which can provide continuous visual localization.

Key words: indoor localization, visual localization, image matching, perceptual Hash, structure from motion

中图分类号: