测绘学报 ›› 2021, Vol. 50 ›› Issue (7): 905-915.doi: 10.11947/j.AGCS.2021.20200125

• 摄影测量学与遥感 • 上一篇    下一篇

干雪深度反演的同极化相位差模型

宋依娜1, 肖鹏峰1,2,3, 张学良1, 卓越1, 马威1   

  1. 1. 南京大学地理与海洋科学学院, 江苏 南京 210023;
    2. 自然资源部国土卫星遥感应用重点实验室, 江苏 南京 210023;
    3. 江苏省地理信息技术重点实验室, 江苏 南京 210023
  • 收稿日期:2020-04-14 修回日期:2021-04-20 发布日期:2021-08-13
  • 通讯作者: 肖鹏峰 E-mail:xiaopf@nju.edu.cn
  • 作者简介:宋依娜(1997-),女,硕士生,研究方向为积雪遥感。E-mail:syn970219@foxmail.com
  • 基金资助:
    国家自然科学基金(41671344);国家科技基础资源调查专项(2017FY100502)

The co-polarized phase difference model for dry snow depth inversion

SONG Yina1, XIAO Pengfeng1,2,3, ZHANG Xueliang1, ZHUO Yue1, MA Wei1   

  1. 1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
    2. Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China;
    3. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
  • Received:2020-04-14 Revised:2021-04-20 Published:2021-08-13
  • Supported by:
    The National Natural Science Foundation of China (No. 41671344);The National Basic Resource Survey Special (No. 2017FY100502)

摘要: 积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究区积雪各向异性介电常数恒定的理想情况下,CPD仅是雪深的函数,可用半经验的线性模型反演雪深,反演精度的高低与计算CPD过程中使用的滤波器的窗口大小有关,浅雪区的最优滤波窗口为59×59像元,反演精度R为0.83,RMSE为2.72 cm,深雪区的最优滤波窗口为33×33像元,反演精度R为0.54,RMSE为11.69 cm;②雪深反演误差与坡度显著相关,随着坡度的增加,雪深的反演误差呈现出显著增加的趋势,雪深反演不确定性受雪层变质程度、含水量及卫星入射角观测几何条件影响,反演方法对于干燥、雪层变质结晶程度低、均质的积雪及具有大入射角的SAR卫星有更好的适用性;③对比已有基于CPD模型的雪深反演方法,本文方法已经将反演所需要的参数减少为遥感获取的CPD数据,以及进行模型拟合的实测雪深数据,反演精度更高。研究表明CPD模型反演山区雪深空间分布是有效和可行的,研究成果为山区雪深遥感反演提供了新思路。

关键词: 克兰河, 积雪深度, SAR, 积雪微结构, 同极化相位差

Abstract: Snow depth is an important structure parameter of snow cover. Obtaining high-precision spatial distribution of snow depth is significant to regional water resources management, climate change research, and disaster prediction. Recently, the co-polarized phase difference (CPD) model based on the polarimetric synthetic aperture radar (PolSAR) technique has shown promising results regarding the dry snow depth estimation. The model is established based on the birefringent properties of snow and on the Maxwell-Garnett mixing formulas providing a link between the snow microstructure and CPD. In this study, the dry snow depth is computed using the PolSAR CPD method with C band GF-3 quad-polarization data and measured samples. The study area is selected from the upstream of Kelan River basin, which is located in the north Altai Mountains in Xinjiang, China. To improve the retrieving accuracy, we divide the study area into deep snow area and shallow snow area. The results show that: ①In the ideal case with constant snow anisotropic relative permittivity, CPD is only a function of snow depth. The semi-empirical linear fit model can be used to invert snow depth and the inversion accuracy is related to the window size of the Gaussian low-pass filter used in the CPD calculation. The optimal filter window in shallow snow area is 55×55 pixels and the corresponding accuracy is R=0.83 and RMSE=2.72 cm, and the optimal filter window in deep snow area is 37×37 pixels and the corresponding accuracy is R=0.54 and RMSE=11.69 cm. ②With the increase of slope, the inversion error of snow depth shows a trend of increasing. The inversion uncertainty is affected by the degree of snow metamorphism, water content of snow and the incidence angle. The inversion method is more applicable to the snow layers with dry, homogeneous and low metamorphic crystallization and the SAR with larger incidence angle. ③Compared with the existing CPD model-based snow depth inversion methods, the proposed inversion method has higher accuracy and reduces the required parameters for inversion. Therefore, this study shows the practicability of CPD model in the dry snow depth estimation over mountain areas and provides a new idea for improving snow depth accuracy using CPD models.

Key words: Kelan River, snow depth, SAR, snow microstructure, co-polarized phase difference

中图分类号: