[1] 国家对地观测科学数据中心. 中国对地观测数据资源发展报告2019[R]. 北京:中国科学院空天信息创新研究院, 2020:1-34. National Earth Observation Data Center. Executive summary of the report on earth observation data resources of China (2019)[R]. Beijing:Aerospace Information Research Institute, Chinese Academy of Sciences, 2020:1-34. [2] 何国金, 王力哲, 马艳, 等. 对地观测大数据处理:挑战与思考[J]. 科学通报, 2015, 60(Z1):470-478. HE Guojin, WANG Lizhe, MA Yan, et al. Processing of earth observation big data:challenges and countermeasures[J]. Chinese Science Bulletin, 2015, 60(Z1):470-478. [3] 李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2):143-149. LI Deren, WANG Mi, SHEN Xin, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):143-149. [4] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12):1211-1216. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1211-1216. [5] 张兵.遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 2018, 43(12):1861-1871. ZHANG Bing. Remotely sensed big data era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1861-1871. [6] CLERY D, VOSS D. All for one and one for all[J]. Science, 2005, 308(5723):809-810. [7] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. DU Peijun, XIA Junshi, XUE Zhaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. [8] CHENG Gong, HAN Junwei. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28. [9] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [11] ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36. [12] MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications:a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177.[Linkout] [13] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning:challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. [14] 陈军,陈晋. GlobeLand30遥感制图创新与大数据分析[J].中国科学:地球科学, 2018, 48:1391-1392. CHEN Jun, CHEN Jin. 2018. GlobeLand30:Operational global land cover mapping and big-data analysis[J]. Science China Earth Sciences, 2018, 48:1391-1392. [15] JING Longlong, TIAN Yingli. Self-supervised visual feature learning with deep neural networks:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2393, PP(99):1. [16] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, Minnesota:NAACL, 2019:4171-4186. [17] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates, Inc, 2020:9912-9924. [18] LAI Zihang, LU E, XIE Weidi. MAST:a memory-augmented self-supervised tracker[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020:6478-6487. [19] HAGHIGHI F, TAHER M R H, ZHOU Z, et al. Learning semantics-enriched representation via self-discovery, self-classification, and self-restoration[C]//Proceedings of 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020:137-147. [20] 周培诚, 程塨, 姚西文,等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报,2021,25(1):182-197 ZHOU Peicheng, CHENG Gong, YAO Xiwen, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. Journal of Remote Sensing, 2021, 25(1):182-197. [21] ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA special publication, 1974, 351(1974):309-317. [22] MANJUNATH B S, MA W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8):837-842. [23] PESARESI M, BENEDIKTSSON J A. A new approach for the morphological segmentation of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):309-320. [24] HUANG Xin, ZHANG Liangpei. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1):161-172. [25] HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Procedings of 1988 Alvey Vision Conference 1988. Manchester. Alvey Vision Club, 1988:10-5244. [26] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [27] YANG Y, NEWSAM S. Spatial pyramid co-occurrence for image classification[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011:1465-1472. [28] ZHAO Bei, ZHONG Yanfei, XIA Guisong, et al. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2108-2123. [29] ZHAO Bei, ZHONG Yanfei, ZHANG Liangpei. Scene classification via latent Dirichlet allocation using a hybrid generative/discriminative strategy for high spatial resolution remote sensing imagery[J]. Remote Sensing Letters, 2013, 4(12):1204-1213. [30] ZHANG Xiuyuan, DU Shihong, WANG Qiao. Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping[J]. Remote Sensing of Environment, 2018, 212:231-248. [31] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259. [32] PAL M. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing, 2005, 26(1):217-222. [33] ZHENG Chen, ZHANG Yun, WANG Leiguang. Semantic segmentation of remote sensing imagery using an object-based Markov random field model with auxiliary label fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):3015-3028. [34] DENG Jia, DONG Wei, SOCHER R, et al.ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:248-255. [35] PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitionworkshops. Boston, MA:IEEE, 2015:44-51. [36] MARMANIS D, DATCU M, ESCH T, et al. Deep learning earth observation classification using ImageNet pretrained networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1):105-109. [37] LIU Yanfei, ZHONG Yanfei, QIN Qianqing. Scene classification based on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):7109-7121. [38] WANG Q, LIU S, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):1155-1167. [38] WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):1155-1167. [39] HELBER P, BISCHKE B, DENGEL A, et al. EuroSAT:a novel dataset and deep learning benchmark for land use and land cover classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7):2217-2226. [40] 叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. [41] LONG J, SHELHAMERE, DARRELL T. Fullyconvolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:3431-3440. [42] LIU Yu, MINH NGUYEN D, DELIGIANNIS N, et al. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery[J]. Remote Sensing, 2017, 9(6):522. [43] HAMAGUCHI R, FUJITA A, NEMOTO K, et al. Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, Nevada:IEEE, 2018:1442-1450. [44] WANG Hongzhen, WANG Ying, ZHANG Qian, et al. Gated convolutional neural network for semantic segmentation in high-resolution images[J]. Remote Sensing, 2017, 9(5):446. [45] VALADA A, MOHAN R, BURGARD W. Self-supervised model adaptation for multimodal semantic segmentation[J]. International Journal of Computer Vision, 2020, 128(5):1239-1285. [46] SHANG Ronghua, ZHANG Jiyu, JIAO Licheng, et al. Multi-scale adaptive feature fusion network for semantic segmentation in remote sensing images[J]. Remote Sensing, 2020, 12(5):872. [47] SHUAI Bing, ZUO Zhen, WANG Bing, et al. Scene segmentation with DAG-recurrent neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1480-1493. [48] 李道纪,郭海涛,卢俊, 等. 遥感影像地物分类多注意力融和U型网络法[J]. 测绘学报, 2020, 49(8):1051-1064. LI Daoji, GUO Haitao, LU Jun, et al. A remote sensing image classification procedure based on multilevel attention fusion U-Net[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):1051-1064. [49] TAO Chao, QI Ji, LI Yansheng, et al. Spatial information inference net:Road extraction using road-specific contextual information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:155-166. [50] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio:IEEE, 2014:580-587. [51] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448. [52] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [53] YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet:towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul, Korea (South):IEEE, 2019:8231-8240. [54] LI Ke, CHENG Gong, BU Shuhui, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):2337-2348. [55] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, USA:IEEE, 2016:779-788. [56] XIANG W, ZHANG D Q, YU H, et al. Context-aware single-shot detector[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, Nevada:IEEE, 2018:1784-1793. [57] YU Yongtao, GUAN Haiyan, LI Dilong, et al. Orientation guided anchoring for geospatial object detection from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160:67-82. [58] VAN E A. Satellite imagery multiscale rapid detection with windowed networks[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision. Hilton Waikoloa Village, Hawaii:IEEE, 2019:735-743. [59] HE, H. AND GARCIA, E.A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge And and Data Engineering, 2009, 21(9):1263-1284. [60] JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1):1-54. [61] JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[J]. Technologies, 2021, 9(1):2. [62] IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4):1-14. [63] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders:Feature learning by inpainting[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:2536-2544. [64] ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]//Proceedings of 2016 European Conference on Computer Vision (ECCV). Amsterdam, the Netherlands:Springer, 2016:649-666. [65] LARSSON G, MAIRE M, SHAKHNAROVICH G. Colorization as a proxy task for visual understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:840-849. [66] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA:IEEE, 2020:9726-9735. [67] KALANTIDIS Y, SARIYILDIZ M B, PION N, et al. Hard negative mixing for contrastive learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates, Inc, 2020:21798-21809. [68] CHEN TING, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning.[S.l.]:PMLR, 2020:1597-1607. Virtual Event. [69] YANG Xingyi, HE Xuehai, LIANG Yuxiao, et al. Transfer learning or self-supervised learning? A tale of two pretraining paradigms[EB/OL].[2020-12-16].. https://arxiv.org/abs/2007.04234. [70] GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample:transferring a 30m resolution sample set collected in 2015 to mapping 10m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. [71] LONG Yang, XIA Guisong, LI Shengyang, et al. DiRS:On creating benchmark datasets for remote sensing image interpretation[EB/OL].[2019-11-06]. https://arxiv.org/abs/2006.12485v1. [72] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:3974-3983. [73] TAO Chao, QI Ji, LU Weipeng, et al. Remote sensing image scene classificationwith self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2020(99):1-5.[Linkan] [74] XIE E, DING J, WANG W, et al. Detco:unsupervised contrastive learning for object detection[C]//Proceedings of 2021 IEEE International Conference on Computer Vision.[S.l.]:IEEE, 2021. [75] ZHU Linchao, YANG Yi. ActBERT:learning global-local video-text representations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA:IEEE, 2020:8743-8752. [76] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[C]//Proceedings of 2014 International Conference on Neural Information Processing SystemsDeep Learning workshop. Montreal, Quebec:MIT Press. 2014. [77] TUNG F, MORI G. Similarity-preserving knowledge distillation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul, Korea (South):IEEE, 2019:1365-1374. [78] JIN Pu, XIA Guisong, HU Fan, et al. Aid++:an updated version of aid on scene classification[C]//Proceedings of IEEE 2018 International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018:4721-4724. [79] LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images:a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307. [80] SUMBUL G, CHARFUELAN M, DEMIR B, et al. Bigearthnet:a large-scale benchmark archive for remote sensing image understanding[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama,Japan:IEEE, 2019:5901-5904. |