测绘学报 ›› 2023, Vol. 52 ›› Issue (11): 1917-1928.doi: 10.11947/j.AGCS.2023.20220490

• 摄影测量学与遥感 • 上一篇    下一篇

低秩表示与深度学习结合的裂缝检测与样本生成方法

赵旭辉1, 谢梦洁1, 杨飚2, 杨刚3, 高智1   

  1. 1. 武汉大学遥感信息工程学院, 湖北 武汉 430079;
    2. 广州市高速公路有限公司, 广东 广州 510030;
    3. 中交路桥建设有限公司, 北京 101107
  • 收稿日期:2022-08-09 修回日期:2023-04-30 发布日期:2023-12-15
  • 通讯作者: 高智 E-mail:gaozhinus@whu.edu.cn
  • 作者简介:赵旭辉(1993-),男,博士生,研究方向为无人系统稳健视觉感知与定位、遥感卫星视频智能解译、超高维数据低秩表达与分析。E-mail:zhaoxuhui@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFD1100203);湖北省自然科学基金(2021CFA088)

A method for crack detection and sample generation based on low rank representation and deep learning

ZHAO Xuhui1, XIE Mengjie1, YANG Biao2, YANG Gang3, GAO Zhi1   

  1. 1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
    2. Guangzhou Expressway Co., Ltd., Guangzhou 510030, China;
    3. China Communications Road and Bridge Construction Co., Ltd., Beijing 101107, China
  • Received:2022-08-09 Revised:2023-04-30 Published:2023-12-15
  • Supported by:
    The National Key Research and Development of China (No. 2020YFD1100203);The Natural Science Foundation of Hubei Province (No. 2021CFA088)

摘要: 随着社会的快速发展,越来越多高质量桥梁、公路、隧道等大型基础设施显著提高了人民生活水平。但大量新增或既有的基础设施也给传统基于人工的安全巡检带来新的挑战:如何自动获得它们的健康状态、对异常情况进行精准测绘成为一大难题。本文以桥梁道路裂缝为研究对象,针对现有方法智能化水平低、泛化性不够的问题,提出低秩表示与深度学习结合的裂缝检测与样本生成方法。一方面,通过低秩表示,可自动从具有相似背景的路面影像序列中挑选出包含裂缝的影像,再结合灰度与几何信息进行后处理,获得像素级裂缝掩膜。另一方面,针对现实中各类复杂场景,进一步从影像语义分割角度,提出一种融合多层级特征和空洞空间金字塔池化的裂缝检测深度网络,并使用由低秩表示获得的裂缝样本进行训练。大量试验表明,本文方法在裂缝识别精度和自动化方面显著优于现有方法,不仅可用于各类桥梁的裂缝检测、定位与测绘,还可用于隧道、水坝等其他场景,泛化性能良好。

关键词: 裂缝检测, 低秩表示, 深度学习, 桥梁道路, 异常测绘, 道路巡检

Abstract: With the rapid development of society, large infrastructures such as roads, tunnels, and bridges are built, significantly improving people's living standards. But many new or existing infrastructures bring tremendous workload and challenge traditional manual-based security inspection. Therefore, it is of great urgency to automatically monitor infrastructures' health status and map anomalies accordingly. In this paper, we focus on bridges and propose a pavement crack detection method via synergizing low rank representation (LRR) and deep learning techniques to address the problems of low intelligence and insufficient generalization of existing methods. In the first stage, we automatically discriminate most crack frames from the long sequence with a consistent pavement base by LRR. Then we localize the cracks and obtain pixel-wise masks with post-processing based on grayscale and geometry clues in images. In the second stage, we formulate the problem as a semantic segmentation task and propose a network leveraging multi-level features and atrous spatial pyramid pooling (ASPP) for robust performance in various scenes. Finally, we train this network with generated pixel-wise samples from LRR. Extensive experiments on a wide range of pavements demonstrate that our method significantly outperforms many state-of-the-art approaches in terms of both accuracy and automaticity, which can also be adopted in other scenarios.

Key words: crack detection, low rank representation, deep learning, bridge pavement, anomaly mapping, pavement inspection

中图分类号: