[1] 季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202. JI Shunping, LUO Chong, LIU Jin. A review of dense stereo image matching methods based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. [2] SCHARSTEIN D, SZELISKI R, ZABIH R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1): 7-42. [3] 岳庆兴, 高小明, 唐新明. 基于半全局优化的资源三号卫星影像DSM提取方法[J]. 武汉大学学报(信息科学版), 2016, 41(10): 1279-1285. YUE Qingxing, GAO Xiaoming, TANG Xinming. ZY-3 DSM generation method based on semi-global optimization[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1279-1285. [4] HIRSCHMVLLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341. [5] GEHRKE S, MORIN K, DOWNEY M, et al. Semi-global matching: an alternative to LiDAR for DSM generation? [EB/OL].[2022-10-04]. https://www.isprs.org/proceedings/XXXVIII/part1/11/11_01_Paper_121.pdf. [6] D'ANGELO P, REINARTZ P. Semiglobal matching results on the ISPRS stereo matching benchmark[EB/OL]. [2022-10-04]. https://pdfs.semanticscholar.org/63a1/166a69bb236bf0c07c4d0c421aa8ecad3e81.pdf. [7] 张力, 张继贤. 基于多基线影像匹配的高分辨率遥感影像DEM的自动生成[J]. 武汉大学学报(信息科学版), 2008, 33(9): 943-946. ZHANG Li, ZHANG Jixian. Automatic DEM generation from high-resolution satellite imagery based on multiple-baseline image matching[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 943-946. [8] 刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9): 1141-1150. DOI: 10.11947/j.AGCS.2019.20180247. LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. DOI: 10.11947/j.AGCS.2019.20180247. [9] POGGI M, TOSI F, BATSOS K, et al. On the synergies between machine learning and binocular stereo for depth estimation from images: a survey[EB/OL].[2022-10-04]. https://arxiv.org/abs/2004.08566. [10] ZBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[EB/OL].[2022-10-04]. https://arxiv.org/pdf/1409.4326.pdf. [11] SEKI A, POLLEFEYS M. SGM-nets: semi-global matching with neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:6640-6649. [12] SHAKED A, WOLF L. Improved stereo matching with constant highway networks and reflective confidence learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017:6901-6910. [13] MAYER N, ILG E, HAUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:4040-4048. [14] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego:IEEE, 2005: 539-546. [15] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 66-75. [16] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5410-5418. [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [18] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361. [19] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3061-3070. [20] SCHARSTEIN D, HIRSCHMVLLER H, KITAJIMA Y, et al. High-resolution stereo datasets with subpixel-accurate ground truth[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 31-42. [21] MAYER N, ILG E, FISCHER P, et al. What makes good synthetic training data for learning disparity and optical flow estimation?[J]. International Journal of Computer Vision, 2018, 126(9): 942-960. [22] TAO Rongshu, XIANG Yuming, YOU Hongjian. An edge-sense bidirectional pyramid network for stereo matching of VHR remote sensing images[J]. Remote Sensing, 2020, 12(24): 4025. [23] HE Sheng, LI Shenhong, JIANG San, et al. HMSM-Net: hierarchical multi-scale matching network for disparity estimation of high-resolution satellite stereo images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 314-330. [24] RAO Zhibo, HE Mingyi, ZHU Zhidong, et al. Bidirectional guided attention network for 3D semantic detection of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6138-6153. [25] KHAMIS S, FANELLO S, RHEMANN C, et al. StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of 2018 ECCV. New York: ACM Press, 2018: 596-613. [26] HE Sheng, ZHOU Ruqin, LI Shenhong, et al. Disparity estimation of high-resolution remote sensing images with dual-scale matching network[J]. Remote Sensing, 2021, 13(24): 5050. [27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-780. [28] WU T, VALLET B, PIERROT-DESEILLIGNY M, et al. A new stereo dense matching benchmark dataset for deep learning[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, XLⅢ-B2-2021: 405-412. [29] BOSCH M, FOSTER K, CHRISTIE G, et al. Semantic stereo for incidental satellite images[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision.Waikoloa Village: IEEE, 2019: 1524-1532. [30] PATIL S, COMANDUR B, PRAKASH T, et al. A new stereo benchmarking dataset for satellite images[EB/OL]. [2022-10-04]. https://arxiv.org/abs/1907.04404.pdf. [31] LI Shenhong, HE Sheng, JIANG San, et al. WHU-stereo: a challenging benchmark for stereo matching of high-resolution satellite images[EB/OL]. [2022-10-04]. https://arxiv.org/abs/2206.02342.pdf [32] 杨幸彬, 吕京国, 江珊, 等. 高分辨率遥感影像DSM的改进半全局匹配生成方法[J]. 测绘学报, 2018, 47(10): 1372-1384. DOI: 10.11947/j.AGCS.2018.20180091. YANG Xingbin, LÜ Jingguo, JIANG Shan, et al. Digital surface model generation for high resolution satellite stereo image based on modified semi-global matching[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1372-1384. DOI: 10.11947/j.AGCS.2018.20180091. [33] 袁修孝, 曹金山. 高分辨率卫星遥感精确对地目标定位理论与方法[M]. 北京: 科学出版社, 2012: 182-183. YUAN Xiuxiao, CAO Jinshan. Theory and method of precise object positioning of high resolution satellite imagery[M]. Beijing: Science Press, 2012: 182-183. |