[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [2] GOETZ A F H. Three decades of hyperspectral remote sensing of the Earth:a personal view[J]. Remote Sensing of Environment, 2009, 113:S5-S16. [3] 张良培, 李家艺. 高光谱图像稀疏信息处理综述与展望[J]. 遥感学报, 2016, 20(5):1091-1101. ZHANG Liangpei, LI Jiayi. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5):1091-1101. [4] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. DU Peijun, XIA Junshi, XUE Zhaohui, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. [5] GHAMISI P, MAGGIORI E, LI S T, et al. New frontiers in spectral-spatial hyperspectral image classification the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):10-43. [6] ZHONG Y, HU X, LUO C, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [7] TAN K, WANG H, CHEN L, et al. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest[J]. Journal of Hazardous Materials, 2020, 382:120987. [8] DARVISHZADEH R, ATZBERGER C, SKIDMORE A, et al. Mapping grassland leaf area index with airborne hyperspectral imagery:a comparison study of statistical approaches and inversion of radiative transfer models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):894-906. [9] NASRABADI N M. Hyperspectral target detection:an overview of current and future challenges[J]. IEEE Signal Processing Magazine, 2014, 31(1):34-44. [10] XUE Z, NIE X. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):73-90. [11] FU P, ZHANG W, YANG K, et al. A novel spectral analysis method for distinguishing heavy metal stress of maize due to copper and lead:RDA and EMD-PSD[J]. Ecotoxicology and Environmental Safety, 2020, 206:111211. [12] LIU S, MARINELLI D, BRUZZONE L, et al. A review of change detection in multitemporal hyperspectral images:current techniques, applications, and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):140-58. [13] CHANG S, DU B, ZHANG L. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4033-4046. [14] JIA S, TANG G, ZHU J, et al. A novel ranking-based clustering approach for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):88-102. [15] TARAMELLI A, VALENTINI E, INNOCENTI C, et al. FHYL:field spectral libraries, airborne hyperspectral images and topographic and bathymetric LiDAR data for complex coastal mapping[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne:IEEE, 2013. [16] SU H, YAO W, WU Z, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:238-252. [17] LI Z, HUANG H, DUAN Y, et al. DLPNet:a deep manifold network for feature extraction of hyperspectral imagery[J]. Neural Networks, 2020, 129:7-18. [18] KUMAR B, DIKSHIT O, GUPTA A, et al. Feature extraction for hyperspectral image classification:a review[J]. International Journal of Remote Sensing, 2020, 41(16):6248-6287. [19] GHAMISI P, PLAZA J, CHEN Y, et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):8-32. [20] DU P J, XIA J S, ZHANG W, et al. Multiple classifier system for remote sensing image classification:a review[J]. Sensors (Basel), 2012, 12(4):4764-4792. [21] BENEDIKTSSON J A, PESARESI M, ARNASON K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9):1940-1949. [22] DALLA M M, VILLA A, BENEDIKTSSON J A, et al. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):542-546. [23] JIA S, SHEN L L, LI Q Q. Gabor feature-based collaborative representation for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1118-1129. [24] ZHANG W, DU P J, LIN C, et al. An improved feature set for hyperspectral image classification:harmonic analysis optimized by multiscale guided filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3903-3916. [25] XIA J S, DU P J, HE X Y, et al. Hyperspectral remote sensing image classification based on rotation forest[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):239-243. [26] 魏立飞, 余铭, 钟燕飞, 等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(03):343-354. DOI:10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J].Acta Geodaetica et Cartographica Sinica, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. [27] YUAN Q, SHEN H, LI T, et al. Deep learning in environmental remote sensing:achievements and challenges[J]. Remote Sensing of Environment, 2020, 241:111716. [28] MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications:a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. [29] AUDEBERT N, LE SAUX B, LEFEVRE S. Deep learning for classification of hyperspectral data:a comparative review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):159-173. [30] HONG D, GAO L, YAO J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5966-5978. [31] XUE Z, ZHANG M, LIU Y, et al. Attention-based second-order pooling network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-16. [32] HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]//Proceedings of the 21st international conference on artificial neural networks. Espoo:Springer Berlin Heidelberg, 2011:44-51. [33] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. Advances in Neural Information Processing Systems, 2017, 30. [34] HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver:OpenReview.net, 2018:1-15. [35] PAOLETTI M E, HAUT J M, FERNANDEZ B, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2145-2160. [36] WANG X, TAN K, DU Q, et al. Caps-TripleGAN:GAN-assisted CapsNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):7232-7245. [37] JIANG X, LIU W, ZHANG Y, et al. Spectral-spatial hyperspectral image classification using dual-channel capsule networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6):1094-1098. [38] YIN J, LI S, ZHU H, et al. Hyperspectral image classification using CapsNet with well-initialized shallow layers[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1095-1099. [39] LI H C, WANG W Y, PAN L, et al. Robust capsule network based on maximum correntropy criterion for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:738-751. [40] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [41] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377. [42] WOO S, PARK J, LEE J-Y, et al. CBAM:convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Munich:Springer, 2018:3-19. [43] WANG Q, WU B, ZHU P, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020:11534-11542. [44] DEBES C, MERENTITIS A, HEREMANS R, et al. Hyperspectral and LiDAR data fusion:outcome of the 2013 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2405-2418. [45] 高奎亮, 余旭初, 张鹏强, 等. 利用胶囊网络实现高光谱影像空谱联合分类[J]. 武汉大学学报(信息科学版), 2022, 47(03):428-437. GAO Kuiliang, YU Xuchu, ZHANG Pengqiang, et al. Hyperspectral image spatial-spectral classification using a capsule network based method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3):428-437. [46] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259. [47] BELGIU M, DRǍGUŢ L. Random forest in remote sensing:a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31. [48] XU Y, ZHANG L, DU B, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018:1-17. [49] HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015:1-12. [50] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:transformers for image recognition at scale[C]//Proceedings of 2021 International Conference on Learning Representations. Vienna:OpenReview.net, 2021:1-22. [51] SHARMA V, DIBA A, TUYTELAARS T, et al. Hyperspectral CNN for image classification & band selection, with application to face recognition[R]. Belgium:KU Leuven, 2016. [52] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. |