[1] 洪亮, 冯亚飞, 彭双云, 等. 面向对象的多尺度加权联合稀疏表示的高空间分辨率遥感影像分类[J]. 测绘学报, 2022, 51(2):224-237. DOI: 10.11947/j.AGCS.2022.20190290. HONG Liang, FENG Yafei, PENG Shuangyun, et al. Classification of high spatial resolution remote sensing imagery based on object-oriented multi-scale weighted sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):224-237. DOI: 10.11947/j.AGCS.2022.20190290. [2] XU Kunpeng, ZHAO Zhao, LI Kun, et al. Estimation of crop biomass using GF-3 polarization SAR data based on genetic algorithm feature selection[J]. Journal of Geodesy and Geoinformation Science, 2020,3(4): 126-136. [3] ZHENG Tong, LEI Peng, WANG Jun. A hybrid features based detection method for inshore ship targets in SAR imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1):95-107. [4] TANG J, ALELYANI S, LIU H. Feature selection for classification: a review[J]. Data Classification: Algorithms and Applications, 2014: 37. [5] LI Wei, LU Chan, CAO Shiyi. Dynamic remote sensing monitoring of land cover in ecological protection area based on GIS technology[J]. International Journal of Environmental Technology and Management, 2021, 24(1-2): 77-92. [6] ZHAO J, ZHOU Q, CHEN Y, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition[J]. Infrared Physics & Technology, 2013, 56: 93-99. [7] REN Zhiwei, WU Lingda. Hyperspectral intrinsic image decomposition based on automatic subspace partitioning[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103004. [8] 苏红军. 高光谱遥感影像降维: 进展、挑战与展望[J]. 遥感学报, 2022, 26(8): 1504-1529. SU Hongjun. Dimensionality reduction for hyperspectral remote sensing: advances, challenges, and prospects[J]. National Remote Sensing Bulletin, 2022, 26(8): 1504-1529. [9] JANG S W, LEE Sanghong. Feature selection based on Euclid distance and neuro-fuzzy system[J]. Journal of Advances in Information Technology, 2020: 155-160. [10] JIA Sen, TANG Guihua, ZHU Jiasong, et al. A novel ranking-based clustering approach for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 88-102. [11] HUANG W, ZHANG Y, YU Y, et al. Historical data-driven risk assessment of railway dangerous goods transportation system: comparisons between entropy weight method and scatter degree method[J]. Reliability Engineering & System Safety, 2021, 205: 107236. [12] GAO Yan, MARPU P, NIEMEYER I, et al. Object-based classification with features extracted by a semi-automatic feature extraction algorithm-SEaTH[J]. Geocarto International, 2011, 26(3): 211-226. [13] 余晓敏, 湛飞并, 廖明生, 等. 利用改进SEaTH算法的面向对象分类特征选择方法[J]. 武汉大学学报(信息科学版), 2012, 37(8): 921-924. YU Xiaomin, ZHAN Feibing, LIAO Mingsheng, et al. Object-oriented feature selection algorithms based on improved SEaTH algorithms[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 921-924. [14] 张群, 赵超英. 基于面向对象的高分遥感数据甘肃黑方台黄土滑坡半自动识别[J]. 灾害学, 2017, 32(3):210-215. ZHANG Qun, ZHAO Chaoying. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai, Gansu[J]. Journal of Catastrophology, 2017, 32(3):210-215. [15] 王春燕, 王刘明, 张媛, 等. 基于SEaTH的决策树方法在区域尺度土地覆被分类中的应用[J]. 兰州大学学报(自然科学版), 2019, 55(1): 11-18. WANG Chunyan, WANG Liuming, ZHANG Yuan, et al. Application of decision tree method based on SEaTH in land cover classification at regional scale[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(1): 11-18. [16] 王贺, 陈劲松, 余晓敏. 面向对象分类特征优化选取方法及其应用[J]. 遥感学报, 2013, 17(4):816-829. WANG He, CHEN Jinsong, YU Xiaomin. Feature selection and its application in object-oriented classification[J]. Journal of Remote Sensing, 2013, 17(4):816-829. [17] 何志文, 李夕海, 刘代志, 等. 基于相关性分析的特征选择方法研究[J]. 核电子学与探测技术, 2005, 25(6):729-732, 749. HE Zhiwen, LI Xihai, LIU Daizhi, et al. A study on methods of feature selection based on the correlation analysis[J]. Nuclear Electronics & Detection Technology, 2005, 25(6):729-732, 749. [18] SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients: appropriate use and interpretation[J]. Anesthesia & Analgesia, 2018, 126(5): 1763-1768. [19] LEE RODGERS J, ALAN NICEWANDER W. Thirteen ways to look at the correlation coefficient[J]. The American Statistician, 1988, 42(1): 59-66. [20] MARPU P R, NIEMEYER I, NUSSBAUM S, et al. A procedure for automatic object-based classification[M]//Lecture Notes in Geoinformation and Cartography. Berlin: Springer, 2008: 169-184. [21] FAN Jinlong, DEFOURNY Pierre, DONG Qinghan, et al. Sent2Agri system based crop type mapping in Yellow River irrigation area[J].Journal of Geodesy and Geoinformation Science,2020,3(4):110-117. [22] AO Y, WANG J, ZHOU M, et al. Fully convolutional networks for street furniture identification in panorama images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13: 13-20. [23] PAL N R, PAL S K. A review on image segmentation techniques[J]. Pattern recognition, 1993, 26(9): 1277-1294. [24] BENZ U C, HOFMANN P, WILLHAUCK G, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3-4): 239-258. [25] ZHAO Yi, JIANG Mi, MA Zhangfeng. Integration of SAR polarimetric features and multi-spectral data for object-based land cover classification[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4):64-72. [26] 魏立飞, 余铭, 钟燕飞, 等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(3):343-354. DOI: 10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):343-354. DOI: 10.11947/j.AGCS.2020.20190042. [27] 王之, 刘超, 刘秀菊, 等. 基于SEaTH算法的芦山地震无人机低空遥感影像信息对象级分类[J]. 地震研究, 2018, 41(2):173-179. WANG Zhi, LIU Chao, LIU Xiuju, et al. Study on the object-based classification of low-altitude UAV remote sensing image of the Lushan earthquake based on the SEaTH algorithm[J]. Journal of Seismological Research, 2018, 41(2):173-179. [28] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. |